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Abstract1

Mimicry is an anti-predator strategy in which prey species (the mimic) resemble an unprofitable2

species (the model) to deceive predators. Despite theoretical expectations for perfect mimicry,3

imperfect mimicry, where the mimic resembles its model imperfectly, is widespread in nature. To4

understand how imperfect mimicry can persist ecologically, we studied the effect of different preda-5

tor recognition processes on the dynamics and stability of various mimicry systems. Specifically,6

we extended a dynamical model that integrates optimal foraging and signal detection theories7

by introducing a novel abundance-dependent recognition mechanism, where predators’ percep-8

tion of the similarity between mimic and model is influenced by the relative abundance of prey9

types. We demonstrate that intermediate similarity promotes stable community dynamics and10

increases mimic abundance in single Batesian mimicry systems. Moreover, abundance-dependent11

recognition leads predators to reduce attack on mimics with low morphological similarity, further12

contributing to system stability. Extending the framework to a multi-mimicry system, we find that13

Batesian and Müllerian mimics have contrasting effects: intermediate Batesian similarity continues14

to stabilize the system, while high Müllerian similarity provides additional protection and can off-15

set destabilization caused by highly similar Batesian mimics. Our study offers a novel explanation16

for the prevalence of imperfect mimicry in nature and highlights how recognition processes shape17

the ecological stability of mimicry systems.18

19

20

Keywords: Batesian mimicry, imperfect mimicry, Mimicry complex, morphological similarity,21

Müllerian mimicry, signal detection theory, optimal foraging theory22
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Introduction23

Mimicry is a complex anti-predator adaptation that involves interactions among three main players:24

the mimic, the model, and the predator (Ruxton et al., 2004, Quicke, 2017). In this system, the model25

is an unprofitable prey that displays aposematic signals to advertise its unprofitability. The mimic,26

on the other hand, displays phenotypes that resemble those of the model, including behavior,27

chemical compounds, and, more commonly, morphological characteristics such as color, pattern,28

and shape (Kikuchi et al., 2013). These phenotypes deceive predators into misidentifying the mimic29

as the unprofitable model. One can categorize a mimicry system based on the mimic’s profitability30

to the predator, with Batesian and Müllerian mimicry being the two most widely recognized forms.31

In Batesian mimicry, the mimic is a profitable prey that reduces its predation risk by resembling32

an unprofitable model. However, the model in this system involuntarily suffers higher mortality33

as the presence of the Batesian mimic confuses the predators, thereby reducing the effectiveness of34

the model’s aposematic display (Bates, 1862). In Müllerian mimicry, the mimic is an unprofitable35

prey that shares a common aposematic signal with the model. Unlike Batesian mimicry, both the36

mimic and the model benefit from their resemblance in Müllerian mimicry due to the positive37

reinforcement of the aposematic signal (Müller, 1879, Vane-wright, 1980, Mallet & Joron, 1999,38

Ruxton et al., 2004). It has been suggested that natural selection should favor mimics that closely39

resemble their model in both mimicry systems, resulting in highly similar mimic–model pairs40

(Nur, 1970, Sherratt, 2002, Ruxton et al., 2018). However, empirical evidence shows that many41

mimics do not closely resemble their models despite the apparent advantage of high similarity, a42

phenomenon known as imperfect mimicry (Sherratt, 2002, Kikuchi et al., 2013, Sherratt & Peet-Paré,43

2017, Bosque et al., 2018, McLean et al., 2019).44

This contradictory phenomenon raises the question: what mechanisms allow imperfect45

mimicry to persist in nature? Many hypotheses and theories have been proposed to explain46

the existence of imperfect mimicry (Penney et al., 2012, Pfennig & Kikuchi, 2012, Kikuchi et al.,47

2013). On one hand, evolutionary explanations, such as the ”chase-away” hypothesis, predict48

that imperfect mimicry exists because models evolve away from their mimic (Nur, 1970, Oaten49

et al., 1975, McGuire et al., 2006, Franks et al., 2009, Akcali et al., 2018) (also see Sherratt (2002),50

Penney et al. (2012), Johnstone (2002), Pfennig & Mullen (2010), Tomizuka & Tachiki (2024) for51
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more evolutionary hypotheses). On the other hand, ecological explanations, such as the ”eye of52

the beholder” hypothesis, argue that what is perceived as imperfect mimicry by humans may in53

fact be effective from the perspective of the predator (Cuthill & Bennett, 1993, Dittrich et al., 1993).54

Furthermore, the ”multiple models and multiple predators” hypothesis suggests that imperfect55

mimicry could arise either because the mimic resembles multiple models or because multiple56

predators rely on different signals to detect the mimic (Edmunds, 2000, Sherratt, 2002, Pekár et al.,57

2011). As a result, the mimic might resemble many aposematic signals from different models,58

resulting in a signal that partially resembles several model species but does not closely match any59

single one (also see Kikuchi et al., 2013 for additional ecological hypotheses).60

In addition to morphological similarities, different types of predator recognition processes61

could also influence the dynamics of mimicry systems (Darst, 2006, Chittka & Osorio, 2007). These62

recognition processes shape the realized similarity perceived by the predator, which may differ63

from the actual mimic–model morphological similarity. Predator recognition can be affected64

by the learning efficiency of the predator (Huheey, 1964) or by the abundance of different prey65

items (Nelson et al., 2010). Müllerian mimicry is a classic example of such abundance-dependent66

recognition — a higher abundance of unprofitable mimics increases predator encounters and67

reinforces the association between the aposematic signal and unprofitability (Müller, 1879). This68

type of abundance-dependent recognition is particularly important on an ecological timescale69

as it creates intricate feedback between prey abundance, predator recognition, predator attack70

decisions, and subsequent community dynamics.71

Despite numerous hypotheses being proposed to address the emergence of imperfect mimicry,72

its effects on population dynamics and the stability of mimicry systems remain unclear. Under-73

standing these ecological mechanisms and their consequences clarifies how imperfect mimicry74

persists over short ecological timescales, which is essential for setting the stage for its evolution75

over longer timescales. Previous theoretical studies addressing the stability of mimicry systems76

often lacked comprehensive dynamics of the entire system: some overlooked the dynamics of the77

predator (e.g., Getty, 1985), while others omitted both the predator and the non-mimetic alternative78

prey (e.g., Yamauchi, 1993, Kumazawa et al., 2006). Other studies have focused on how mimicry79

dynamics are shaped by factors such as the influx of alternative prey, the degree of similarity80
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between the mimic and the model, and the level of defense equipped by the model species (Brower81

& Moffitt, 1974, Rowell-Rahier et al., 1995, Kikuchi et al., 2022). Many of these theoretical studies82

employed optimal foraging theory, which assumes that predators make attack decisions based on83

properties of the prey items (i.e., their profitability and abundance; Charnov, 1973, 1976, Stephens84

& Krebs, 1986).85

Although previous theoretical studies on mimicry population dynamics have mostly focused86

on single Batesian mimic system based on morphological similarity, natural mimicry often forms87

multi-mimicry complexes involving multiple types of mimicries and various recognition processes.88

Specifically, multi-mimicry complexes involving both Batesian mimicry and Müllerian mimicry89

are common in nature (e.g., Heliconius butterfly Quicke, 2017 and Pachyrhynchus weevils Schultze,90

1923), where abundance-dependent recognition may also play an important role. With a greater91

number of prey types involved, the predator needs to juggle between multiple mimic–model92

similarities and prey profitabilities when making attack decisions. Importantly, Müllerian mimics93

differ fundamentally from Batesian mimics: the resemblance between the Müllerian mimic and the94

model produces a positive reinforcement that provides both species greater protection, whereas95

the resemblance between the Batesian mimic and the model imposes a cost on the model species.96

Therefore, Batesian and Müllerian mimics may differentially influence the dynamics of the multi-97

mimicry system. To investigate the persistence of imperfect mimicry in natural systems with both98

Batesian mimicry and Müllerian mimicry, it is essential to consider the interactive effect of their99

similarity with the model and their profitability for the predator.100

Here, we extended the framework proposed by Kikuchi et al. (2022), which offers an exciting101

opportunity to investigate the persistence of imperfect mimicry and its resulting community dy-102

namics by integrating optimal foraging theory into a dynamical model of the full mimicry system.103

By exploring the impact of mimic–model similarity in a single Batesian mimicry system, we offer a104

novel perspective on the ecological dynamics of mimicry systems: imperfect mimicry can stabilize105

community dynamics and lead to a higher mimic abundance. We then explore how this stability106

pattern conferred by imperfect mimicry varied with different predator recognition mechanisms.107

To this end, we formulated a novel phenomenological representation of the predator’s recognition108

process, which depends on both the innate mimic–model similarity (i.e., morphological similarity109
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based on prey traits) and the abundance ratio of the mimic and the model. Finally, we expanded the110

framework to a multi-mimicry system encompassing both Batesian and Müllerian mimicry. We ex-111

plored how the dynamics of the multi-mimicry system are influenced by the similarities between112

different mimics and the model under the aforementioned abundance-dependent recognition-113

determining process. Overall, we show that imperfect mimicry can, counterintuitively, promote114

higher mimic abundance and greater stability across a range of mimicry systems that differ in115

predator recognition mechanism and the number of mimic species involved.116

Method117

We used a theoretical model to study how mimic–model similarity and different predator recogni-118

tion processes influence predation decisions and the dynamics of mimicry systems. Our ordinary119

differential equation (ODE) model is built upon the theoretical framework of Kikuchi et al. (2022),120

which combines optimal foraging theory and signal detection theory to simulate the dynamics of121

mimicry systems. We extended this framework to investigate how mimic–model similarity and122

predators’ abundance-dependent recognition influence the abundance of mimic species and the123

stability of the system through predator decision-making (Fig. 1). In the following sections, we first124

introduce the foundations determining the predator decision-making process, including optimal125

foraging theory, signal detection theory, and abundance-dependent recognition. We then present126

the population dynamic framework that governs the abundance of species within the mimicry127

system. Finally, we describe the numerical setup used in our study.128

Predator decision-making process129

Optimal foraging theory130

We followed the classic assumption that predators determine their probability (pi) of attacking131

three different types of prey items – mimics (Ncj ; j = 1, 2, · · · , n), model (Nm), and alternative132

prey (Nn) – through optimal foraging theory (Charnov, 1973, 1976; Fig. 1A). Assuming a multi-133

prey Holling type-II functional response, the term that predators attempt to optimize while making134
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foraging decisions is:135

s

(∑
j

Ncj pcj vcj + Nmpmvm + Nnpnvn

)

1 + s

(∑
j

Ncj pcj hcj + Nmpmhm + Nnpnhn

) . (1)

Here, pi represents the probability of the predator attacking prey item i (i = cj , m, n for mimics,136

model, and alternative prey, respectively). The parameter vi represents the value that the predator137

gains from consuming one individual of prey item i, whereas hi represents the time predators138

spend handling one individual of prey item i. Therefore, each Nipivi term in the numerator139

represents the value gain of consuming species i, whereas each Nipihi term in the denominator140

represents the cost of consuming species i. The parameter s represents the predator’s search rate,141

which is assumed to be equal for all prey items. Here, we defined a prey item’s profitability142

based on its vi
hi

(Charnov, 1976). We further assumed that at least one mimic species is a Batesian143

mimic and will have the highest profitability, followed by the alternative prey, and, finally, the144

model. Therefore, when there is only one mimic species (i.e., the Batesian mimic; j = 1), this145

parameterization ensures that vc1
hc1

> vn
hn

> vm
hm

, i.e., the (Batesian) mimic will be the most profitable146

prey. In classic optimal foraging theory, which assumes that predators have complete information147

about the system and can instantaneously recognize different prey types, predator behavior always148

follows an all-or-nothing manner (Charnov, 1976, Stephens & Krebs, 1986). That is, predators will149

either always include that prey in their diet (pi = 1) or never include that prey in their diet150

(pi = 0) upon encounter, with a decision-switching threshold determined by the profitability and151

abundance of prey items (Stephens & Krebs, 1986).152

Signal detection theory153

In mimicry systems, however, predators may experience difficulty in distinguishing between the154

mimic and the model. Such imperfect information results in a non-binary consumption probability155

due to the numerical connection between pcj and pm. Mathematically, this means that the predator156

cannot make independent decisions on pcj and pm to optimize eq. 1; (Getty, 1985, Kikuchi et al.,157

2022). One can first assume that the predator has a fixed recognition ability, which, in the simplest158
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case, depends solely on the morphological similarity between the mimic and the model. Following159

Getty (1985), the probabilities of attacking the mimic and the model are linked by a power law160

function:161

pcj = p
kj
m , (2)

with the exponent kj ∈ [0, 1] representing the morphological similarity between mimic Ncj and162

the model Nm (Fig. 1B). When kj = 0, the predator can distinguish between the mimic and the163

model perfectly, indicating complete discriminability from the predator’s perspective. Following164

classic optimal foraging, in a single Batesian mimic system (i.e., j = 1), the predator will always165

attack the mimic (pc1 = 1) due to its higher profitability (i.e., vc1
hc1

> vm
hm

). On the other end of166

the spectrum, the two prey items are morphologically identical from the predator’s perspective167

when kj = 1 (i.e., perfect mimicry); the predator would treat the mimic and the model as the168

same species and either attack or reject them altogether (pcj = pm = 0 or 1). However, in most169

natural cases, mimicry falls between the two extreme cases, and kj will be a number between170

0 and 1. Here, 0 < kj < 1 represents the scenario when imperfect information interferes with171

optimal foraging decision-making, leading to non-binary optimal foraging decisions (i.e., 0 < pcj ,172

pm < 1). As kj approaches one, predators experience greater difficulty distinguishing the mimic173

from the model, leading to a higher likelihood of attacking the wrong prey (i.e., a higher perceived174

mimic–model similarity). For our purpose, we defined intermediate similarity as 0.5 < kj < 0.8.175

At the same time, the attack probability of the alternative prey remains consistent with the classic176

optimal foraging theory (i.e., pn = 0 or 1).177

Abundance-dependent predator recognition178

In addition to the morphological similarity between the mimic and the model, we considered179

a novel predator recognition process that determines the predator’s realized similarity kreal, j180

based on three factors. First, the realized similarity is constrained by the innate morphological181

similarity between mimics and the model, which corresponds to kj in eq. 2 and represents the182

lowest value (highest distinguishability) that kreal, j can achieve. Second, the realized similarity183

is influenced by the abundance ratio of two prey categories: profitable ( vi
hi

> 0) and unprofitable184
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( vi
hi

≤ 0) prey. When unprofitable prey is significantly more abundant than profitable prey,185

predators interacting with this mimicry complex are more likely to encounter unprofitable prey.186

This causes the predator to associate the shared morphological traits with the unprofitable prey,187

thereby perceiving both prey types as unprofitable prey. The opposite outcome occurs when the188

abundance of the profitable prey is significantly higher than that of the unprofitable prey — the189

predator will perceive both prey types as the more abundant profitable prey. However, when the190

two prey categories have a similar abundance, the predator will encounter an equal amount of both191

prey types; the resulting realized similarity will not be biased by prey abundance imbalance but192

instead be determined by the innate mimic–model morphological similarity. Finally, a third factor,193

σj , controls the sensitivity of the predator recognition to the ratio of prey abundance. To represent194

this predator recognition process, we formulated the following abundance-dependent recognition195

function, which phenomenologically characterizes how the realized similarity is affected by the196

three aforementioned factors:197

kreal, j = 1 − (1 − kj) × exp


−

log
Nm+

∑
j

(1−δj)Ncj∑
j

δjNcj

2

2σ2
j


, (3)

with δj = 0 if the profitability of Ncj is equal or smaller than 0 and δj = 1 if the profitability is198

greater than 0; the term within the logarithm thereby represents the abundance ratio of the two199

prey categories. In a two-mimicry system that contains a Batesian mimic (Nc1) and a Müllerian200

mimic (Nc2), the abundance ratio term becomes (Nm+Nc2)/Nc1 . When the innate morphological201

similarity does not constrain realized similarity, i.e., easily distinguishable mimic with kj = 0,202

kreal, j is solely determined by the abundance ratio of different prey categories and can vary freely203

between 0 and 1 (lower curve in Fig. 1C). As the innate morphological similarity kj approaches 1204

(i.e., mimics become hardly distinguishable), the realized similarity krec, j becomes less responsive205

to prey abundance ratio (upper curve in Fig. 1C). The functional form of eq. 3 implies that kreal, j206

approaches 1 when the abundance of the unprofitable and profitable prey is highly unbalanced207

(i.e., when
(

Nm+
∑

j

(1−δj)Ncj

)
/
∑

j

δjNcj approaches 0 or ∞). Under such a scenario, the predator208

treats the two prey categories as if both were the more abundant prey category: with optimal209
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foraging, both are treated as the profitable prey if the abundance ratio approaches 0, and both are210

treated as the unprofitable prey if the ratio approaches ∞.211

Mimicry dynamic system212

Finally, we incorporated optimal foraging theory, signal detection theory, and our novel abundance-213

dependent recognition function into a multi-mimicry dynamical system. We simulate the dynam-214

ics between mimics (Ncj ; j = 1, 2, · · · , n), the model (Nm), the predator (Np), and an alternative215

prey (Nn):216

dNp

dt
= Np


s

(∑
j

Ncj pcj vcj + Nmpmvm + Nnpnvn

)

1 + s

(∑
j

Ncj pcj hcj + Nmpmhm + Nnpnhn

) − µp

 (4-1)

dNcj

dt
= rcj Ncj

(
1 −

Ncj

Kcj

)
− Np

 sNcj pcj

1 + s(
∑
j

Ncj pcj hcj + Nmpmhm + Nnpnhn)

 (4-2)

dNm

dt
= rmNm

(
1 − Nm

Km

)
− Np

 sNmpm

1 + s(
∑
j

Ncj pcj hcj + Nmpmhm + Nnpnhn)

 (4-3)

dNn

dt
= D(Sn − Nn) − Np

 sNnpn

1 + s(
∑
j

Ncj pcj hcj + Nmpmhm + Nnpnhn)

 . (4-4)

The per capita population growth rate of the predator consists of the consumption gain from217

optimal foraging (first term within the bracket in eq. 4-1) and the density-independent mortality218

rate µp (second term within the bracket in eq. 4-1). Specifically, the first term captures the219

total foraging gain the predator obtains from consuming various prey types, where the optimal220

combination of pi is instantaneously adjusted at each time step to maximize the consumption gain221

(eq. 1) under the constraints imposed by signal detection theory (eq. 2) and abundance-dependent222

recognition (eq. 3). The mimics and the model grow logistically, with intrinsic growth rates rcj223

and rm, and carrying capacity Kcj and Km, respectively. The population of the mimics and the224

model decreases due to predator consumption, which depends on the optimized probability pcj225

11
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and pm, respectively (term within the bracket represents per predator consumption). Finally, we226

assumed that the alternative prey has an external population source, thus following chemostat227

dynamics with a continuous flux (D) and an external supply source (Sn); the predator also attacks228

the alternative prey with optimized probability pn.229

Figure 1: Illustrative figure demonstrating how our study incorporates (A) optimal
foraging theory (i.e., predator optimizing attack probability pi to maximize foraging
gain), (B) signal detection theory (i.e., non-independence of attack probabilities via
mimic–model morphological similarity k), and (C) abundance-dependent recognition
(i.e., predator realized recognition kreal also dependent of model–mimic abundance
ratio) into a (D) dynamic system of mimic–model–predator. Here, only a single Bate-
sian mimic is shown for simplicity (so the secondary subscript j in Ncj is omitted). In
panels (B) and (C), we depict two scenarios with low (k = 0.1; red mimic) and high
(k = 0.9; orange mimic) innate mimic–model morphological similarity k. See the main
text for the mathematical description of the full multi-mimic model.

Numerical simulations230

We simulated two different mimicry systems: (1) a single-mimic system with only the Batesian231

mimic (Nc), and (2) a multi-mimic system with both Batesian mimic (Nc1) and Müllerian mimic232

(Nc2). For simplicity, we omitted the secondary subscript j in Ncj in the single-mimic model,233

but reintroduced it in the multi-mimic system (see Appendix A for the full equations). We used234

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2025. ; https://doi.org/10.1101/2025.10.15.670298doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.15.670298
http://creativecommons.org/licenses/by-nc-nd/4.0/


the fourth-order Runge–Kutta method from package deSolve (Karline Soetaert et al., 2010) to235

numerically solve our dynamical system. In all simulations, the integration step size was set to236

0.02 and the dynamics were simulated for 12, 000 time steps. To incorporate optimal foraging,237

the values of pi were adjusted at each integration step by finding the optimal combination that238

maximizes foraging gain (i.e., eq. 1). To better capture the nonlinear function form of eq. 2, the239

maximum foraging gain was found by evaluating eq. 1 with a range of pm (and corresponding pcj )240

values from 0 to 1 in increments of 0.0001. While a larger increment for pm (e.g., 0.1) could accelerate241

the numerical procedure, we note that it would lead to insufficient sampling along the nonlinear242

curve. Parameters in the single-mimic system are as follows (note again secondary subscripts j were243

omitted): vc = 1.6, vn = 0.8, vm = 0, hc = hn = hm = 1. The intrinsic growth rate and carrying244

capacity of the mimic and the model are rc = rm = 2 and Kc = Km = 10, respectively, and the245

death rate of the predator is µp = 0.75. The influx of the alternative prey is controlled by parameters246

Sn = 20 and D = 1, and the search rate is s = 1. We used the following initial conditions for247

all simulations: Np(0) = 0.5, Nc(0) = 1, Nm(0) = 10, Nn(0) = 20. The parameters for the multi-248

mimics system are set as follows (secondary subscripts j were reintroduced to distinguish the249

two mimics): rc1 = rc2 = rm = 2; Kc1 = Kc2 = Km = 10; vc1 = 2.5, vc2 = vm = 0, vn = 0.8;250

hc1 = hc2 = hm = hn = 1; µp = 0.75, and Sn = 20. With vc2 = 0, Nc2 is the Müllerian251

mimic in the system, while Nc1 is the Batesian mimic with the highest profitability. The initial252

conditions for the multi-mimics system are identical to those of the single mimicry system, with253

Nc1(0) = Nc2(0) = 1.254

To study the effect of mimic–model morphological similarity on community dynamics in the255

single-mimic system, we explored k across the parameter range of 0 to 1 by an interval of 0.01. For256

both the single-mimic and multi-mimicry systems, we studied the effect of abundance-dependent257

recognition (eq. 3) by varying the morphological similarity (i.e., k for the single-mimic system and258

both k1 and k2 for the multi-mimic system) from 0 to 1. All simulations were carried out using259

R 4.3.3 (R Core Team, 2024). When presenting simulation results, the last 80% of each simulated260

time series was used to calculate the mean and variance of each species’ abundance, which were261

then used to determine the stability and coexistence outcome of the system. Specifically, we set262

the extinction threshold for each species as 10−10. The stability threshold was set at 10−12, i.e., the263
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system is considered stable if the variance of the predator population is less than 10−11. Since the264

predator interacts with all other prey and exhibits the highest population abundance, calculating265

the variance of the predator population is sufficient to determine the stability of the system.266

Result267

Single Batesian mimic system268

Predator decision depending only on mimic–model morphological similarity269

We first explored the dynamics of a single Batesian mimicry system where the predator’s decision270

depends only on the morphological similarity between the mimic and the model (k; Fig. 2A).271

We showed that along the spectrum of mimic–model similarity (k ranging from 0 to 1), low272

and high similarity produced cyclic dynamics while stable population dynamics were observed273

under intermediate similarity. Moreover, intermediate similarity (0.5 < k < 0.8) also resulted274

in higher predator and mimic abundance (red and orange, respectively, in Fig. 2A upper panel),275

suggesting that intermediate similarity benefits the mimicry system in terms of stability and species276

abundance. We discuss the dynamics below (see also Fig. 3 for detailed time series under different277

k values).278

When the similarity between the mimic and the model is zero (i.e., k = 0, left-most value in279

Fig. 2A), the mimic and the model are treated as two different species by the predator. In this sce-280

nario, cycles emerge from diet composition shifts: while predators always ignore the unprofitable281

model ( vm
hm

= 0) and always attack the mimic due to its high profitability, predators switch between282

including or excluding the alternative prey from its diet since changes in mimic abundance lead283

to different optimal pn (Fig. 3A; see also Appendix B and Fig. S1 for analytical derivation). With284

slightly increased mimic–model similarity (i.e., increasing k towards approximately 0.2), the prob-285

ability of the model being attacked increased while the attack probability of the mimic decreased286

(light blue and orange, respectively, in the lower panel of Fig. 2A). This is because predators now287

sometimes get confused between the mimic and the model and consume the wrong prey. Under288

such low similarity scenario (0 < k < 0.2), we observed that the system still exhibits cycles in its289

diet composition. However, unlike the scenario when k = 0, where predators exclude the model290
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from their diet, here all three prey are included (Fig. 3B), demonstrating that even a slight similarity291

between the mimic and model can influence the community dynamics.292

As the mimic–model similarity continues to increase (as k approaches 0.5), predators find293

it increasingly difficult to distinguish between the mimic and the model. Under this scenario,294

maintaining a high attack probability towards the mimic will lead to accidental consumption of295

the unprofitable model. To avoid this situation, optimal foraging leads predators to reduce their296

attack probability on the mimic. This foraging decision releases the predator from the cost of mis-297

takenly consuming the model, ultimately stabilizing the predator population at higher abundance298

(Fig. 3C). At the same time, the mimic population increases in abundance due to the released299

predation pressure, while the model population continues to decline due to occasional predation.300

Surprisingly, as the similarity between the mimic and the model increases further (0.6 < k < 0.8),301

the probability of attacking the mimic rises again, producing a U-shaped relationship between302

mimic–model similarity and attack probability across this intermediate range of k. This reversal303

occurs because, while predators could theoretically avoid accidentally consuming the model by304

further reducing attacks on mimics, optimal foraging prevents this strategy from being realized305

as the predator still requires foraging gain from the mimic–model species pair. Instead, predators306

unavoidably need to increase their attack probability on both prey items to make up for the fre-307

quent unprofitable accidental attacks, thereby decreasing the abundance of the predator. Initially,308

this decline in predator abundance allows the mimic population to rise further, reaching its peak309

just before similarity exceeds k = 0.8 (Fig. 3D). However, once similarity surpasses this threshold,310

the rising attack probability on mimics leads to a decrease in mimic abundance. Consequently,311

the peaks in predator and mimic abundance occur at different values of k, reflecting the shifting312

balance between prey profitability and foraging pressure within the mimicry complex.313

In addition to the counterintuitive increase in pc, a higher mimic–model similarity also314

results in the reoccurrence of cyclic dynamics (0.88 < k < 1; right-most region in Fig. 2A). When315

0.88 < k < 0.94, population cycles are characterized by diet composition shifts (Fig. 3E) similar316

to those seen under low mimic–model similarity. However, once similarities surpass a certain317

threshold (k > 0.93), the cycles are akin to classic predator–prey population cycles and no longer318

involve diet composition shifts. Instead, predators now view the mimic–model species pair as319
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a single species and consistently include both in their diet (pm = pc = 1; Fig. 3F). Note that320

despite their inability to distinguish the mimic and the model apart, predators do not discard321

the mimic–model species pair from their diet because its collective value remains profitable. We322

show in Figure S2 that making vm < 0 can, heuristically, reduce the collective profitability of the323

mimic–model species pair, eventually causing predators to discard the species pair altogether if324

they share high morphological similarity (Fig. S2).325
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Figure 2: Bifurcation plot for the single mimic system, with predator recognition pro-
cess based on (A) mimic–model morphological similarity or (B) abundance-dependent
recognition. Both (A) and (B) bifurcate along the innate mimic–model morphological
similarity (k). The upper panels of both plots illustrate the abundance of the preda-
tor (Np; red), the mimic (Nc; orange), and the model (Nm; light blue). Note that the
abundance of the predator is divided by four for better visualization. The solid line
represents the mean abundance, and the dashed line represents the maximum and
minimum of the abundance. The lower panels of both plots illustrate the predator’s
attack probability on the mimic (pc; orange), the model (pm; light blue), and the alter-
native prey (pn; dark blue). In panel (B), the realized recognition between the mimic
and the model (kreal; eq. 3) is plotted in green. The solid and dashed lines in the lower
panels also represent the mean and maximum/minimum values, respectively.

Predator decision depending on abundance-dependent recognition326

We next relaxed the assumption that the predator’s decision process is solely determined by mimic–327

model morphological similarity (k), making it dependent on the abundance ratio of two prey328
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Figure 3: Time series of species abundance and predator attack probability for the
single-mimic system with predator recognition based solely on mimic–model mor-
phological similarity (k). Similarity (k) values vary as follows: (A) k = 0, (B) k = 0.1,
(C) k = 0.4, (D) k = 0.7, (E) k = 0.9, and (F) k = 1. The upper half of each panel
illustrates the abundance of the predator (Np; red), the mimic (Nc; orange), and the
model (Nm; light blue). Note that the abundance of the predator is divided by four for
better visualization. The lower half of each panel illustrates the predator’s probability
of attacking the mimic (pc1; orange), the model (pm; light blue), and the alternative
prey (pn; dark blue). Note in panel (F) the lines representing the mimic and the model
completely overlap as they are perceived as the same species under k = 1.

categories, i.e., the profitable mimic and the unprofitable model (Nm
Nc

; eq. 3). We used the notation329

kreal to represent the realized similarity between the mimic and the model from the perspective330

of the predator (again, secondary subscript omitted for simplicity). Unlike the previous scenario331

(Fig. 2A), which produced diet shift cycles under low similarity values, abundance-dependent332

recognition leads to stable dynamics under a wide range of innate similarity values (0 < k < 0.88;333

Fig. 2B). This suggests that when the innate mimic–model similarity is not too high, the predator334

recognition is influenced by the observed Nm
Nc

ratio and reaches an intermediate realized similarity335

(green line in Fig. 2B lower panel). The realized intermediate similarity (0.46 < kreal < 0.88)336

corresponds to values in Figure 2A that stabilize the system and lead to higher predator and337

mimic abundance. In other words, abundance-dependent recognition leads predators to reduce338

attack on mimics with low morphological similarity, causing the system to exhibit stable dynamics339
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associated with intermediate similarity values (i.e., kreal > k).340

However, the predator becomes less responsive to the prey abundance ratio, and the real-341

ized similarity becomes increasingly similar to k, as predator recognition becomes increasingly342

constrained by the innate mimic–model similarity (i.e., high k). That is, the predator cannot adopt343

its realized similarity to an intermediate value that would stabilize the system. Instead, the high344

innate mimic–model morphological similarity causes the predator to perceive the two prey as a345

single species, which causes kreal ≈ k as Nm
Nc

≈ 1; the resulting dynamics is a cyclic behavior with346

reduced population sizes (corresponding to a high k scenario in Fig. 2A).347

Multi-mimic system with abundance-dependent recognition348

We expanded our model to consider a multi-mimic mimicry system consisting of a Batesian mimic349

(Nc1), a Müllerian mimic (Nc2), and a model species (Nm), with the latter two considered as350

unprofitable prey (vc2 = vm = 0). We considered this community composition as it represents351

the simplest mimicry complex with multiple types of mimicries (see also Fig. S3 for an example352

with more species). We explored how the Batesian mimic–model morphological similarity (k1)353

and the Müllerian mimic–model morphological similarity (k2) influenced community dynamics,354

assuming the predator possesses abundance-dependent recognition (see also Fig. ?? for the case355

where foraging decisions depend solely on mimic–model morphological similarity). Intuitively, a356

high kreal, 1 value causes the predator to perceive the mimicry complex as a more profitable group357

of prey, whereas a high kreal, 2 would decrease the overall profitability of the mimicry complex.358

Briefly, the simulation reveals that while intermediate similarity in both Batesian and Müllerian359

mimicry stabilizes the system and increases the abundance of the predator and mimics, different360

types of mimicry vary in their impact on the species abundance (Fig. 4).361

Our simulation suggests that the system exhibits two distinct dynamical regimes, governed362

by the interplay between k1 and k2: (1) a consistent alternative prey inclusion regime (top-left363

of Fig. 4) and (2) an occasional alternative prey exclusion regime (bottom-right of Fig. 4). In the364

first regime, in addition to always consuming the alternative prey (average pn = 1; Fig. 4H, J),365

it is characterized by lower pc1 , pc2 (top-left of Fig. 4B, D) and higher abundance of Nc1 , Nc2 ,366

and Np (top-left of Fig. 4A, C, E). In contrast, in the occasional alternative prey exclusion regime,367
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the alternative prey is not always included (average pn < 1; Fig. 4H, J) but the Batesian and the368

Müllerian mimics are consistently included in the diet with high attack probability, leading to their369

lower abundance (lower-right of Fig. 4A–D). The difference in the diet composition suggests that370

these two regimes are governed by the predator’s diet strategy (see Appendix B for the analytical371

derivation of this boundary).372

Additionally, most scenarios in the top-left consistent alternative prey inclusion regime373

exhibit stable population dynamics, while all scenarios in the lower-right occasional alternative374

prey exclusion regime exhibit cyclic dynamics (Fig. 4I). The boundary separating the two regimes375

shows a positive association between k1 and k2, indicating that a higher value of k2 allows the376

system to tolerate a greater k1 before becoming destabilized (Fig. 4I). When k1 is sufficiently377

high, the system eventually becomes unstable as the predator increasingly perceives the mimicry378

complex as a profitable food source, akin to the instability seen in the single Batesian mimic system379

with high similarity (Fig.2B). However, the presence of a Müllerian mimic can mitigate this effect:380

a Müllerian mimic with sufficiently high k2 can stabilize the system, especially when k1 is fixed at381

low to intermediate values (Fig. 4I). This demonstrates that mimic types differ in their impact on382

system stability, with a perfect Batesian mimic (high k1) causing the system to be unstable and a383

perfect Müllerian mimic (high k2) promoting stability.384

Beyond stability, we examined how the Batesian mimic–model morphological similarity385

(k1) affects mimic abundance, while keeping the Müllerian mimic’s morphological similarity (k2)386

constant. Under abundance-dependent recognition, kreal, 1 remains within an intermediate range387

(0.5 < kreal, 1 < 0.8; Fig. 4E), and Batesian mimic abundance exhibits a hump-shape pattern388

with increasing k1 (orange line in Fig. 5A). Moreover, compared to the scenario where predator389

recognition relies only on morphological similarity ( Fig. ??A), the resulting intermediate kreal, 1390

leads to a higher Batesian mimic abundance. The Müllerian mimic abundance, on the other hand,391

decreases monotonically with the increasing k1 (green line in Fig. 5A). As k1 further increases,392

the dynamics eventually transition into the aforementioned occasional alternative prey exclusion393

regime, characterized by unstable dynamics with consistently low abundance of both mimics as394

the predator now consumes the entire mimicry complex as a single palatable prey.395

Finally, we examined how varying the Müllerian mimic–model morphological similarity (k2)396
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affects mimic abundance, while keeping the Batesian mimic’s morphological similarity (k1) fixed.397

When the Batesian mimic has an innate intermediate similarity (0.5 < k1 < 0.8), the system is398

likely within the occasional alternative prey exclusion regime with low abundance of both mimics399

(Fig. 4A, C). Under this scenario, a Müllerian mimic with high similarity provides protection to the400

mimicry complex: higher k2 balances out the impact from a highly similar Batesian mimic, resulting401

in the transition into the other dynamical regime with high mimic abundances. Moreover, within402

the consistent alternative prey inclusion regime, while kreal, 1 settles within an intermediate level403

(0.5 < kreal, 1 < 0.8) and the Batesian mimic thereby maintains higher abundance, kreal, 2 increases404

monotonically with increasing k2 (Fig. 4F). As a result, Müllerian mimic abundance increases405

with k2 (Fig. 5B), suggesting that the Müllerian mimicry provides more protection under higher406

morphological similarity. Together, these results underscore the contrasting ecological roles of the407

two mimic types. For the Batesian mimic, intermediate similarity to the model reduces predation408

while avoiding the high k1 that causes predators to consume the entire mimicry complex as a409

single profitable prey. In contrast, Müllerian mimics benefit from high similarity as it reinforces410

predator learning, thereby leading to a steady increase in abundance with increasing k2.411
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Figure 4: The effect of the Batesian mimic–model morphological similarity (k1; x-
axis) and the Müllerian mimic–model morphological similarity (k2; y-axis) on system
dynamics and species abundances. The different panels represent different variables:
(A) Batesian mimic abundance (Nc1), (B) attack probability on the Batesian mimic (pc1),
(C) the Müllerian mimic abundance (Nc2), (D) attack probability on the Müllerian
mimic (pc2), (E) realized Batesian mimic similarity (kreal, 1), (F) realized Müllerian
mimic similarity (kreal, 2), (G) predator abundance (Np), (H) attack probability on the
alternative prey (pn), and (I) the log(variance) of the predator population fluctuation,
serving as an indicator of community stability. Panel (J) depicts whether pn = 1 (blue)
or pn < 1 (red), which serves as a binary indicator of the two dynamical regimes: (1) the
consistent alternative prey inclusion regime (blue) and (2) the occasional alternative
prey exclusion regime (red). The white outline in all panels depicts the boundary
separating the two dynamical regimes in (J). Note that the abundances of different
state variables are on different scales to better show the pattern of each variable.
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Figure 5: Bifurcation plot of the multi-mimicry system. (A) bifurcation along the Bate-
sian mimic–model morphological similarity (k1) while fixing the Müllerian mimic’s
morphological similarity (k2 = 0.6). (B) bifurcation along the k2 while fixing k1 = 0.6.
The y-axis of the upper panels shows abundance, and the lower panels show the attack
probability. The upper panels of both plots illustrate the abundances of the predator
(Np; red), the Batesian mimic (Nc1 ; orange), the Müllerian mimic (Nc2 ; green), and
the model (Nm; light blue). Note that the abundance of predator is divided by four
for better visualization. The lower panels of both plots illustrate the predator’s attack
probability on the Batesian mimic (pc1 ; orange), the Müllerian mimic (pc2 ; green), the
model (pm; light blue), and the alternative prey (pn; dark blue). The solid and dashed
lines in all panels represent the mean and maximum/minimum values, respectively.
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Discussion412

We showed that imperfect mimicry (i.e., intermediate similarity between the mimic and the model)413

promotes stable ecological dynamics and allows the mimic to reach high abundance in a single414

Batesian mimicry system. This outcome holds whether predator recognition is shaped solely by415

morphological similarity or by a combination of morphological similarity and prey abundance ratio416

(Fig. 2). In a multi-mimicry system including both Batesian and Müllerian mimics, intermediate417

similarity remains beneficial for the Batesian mimic, while high similarity for the Müllerian mimic418

leads to increased mimic abundance (Fig. 4). These contrasting patterns suggest that the two mimic419

types have different impacts on the system: the Batesian mimic can destabilize the system (and420

lead to low mimic abundance) when too similar to the model, whereas the Müllerian mimic with421

high similarity can promote system stability (and lead to high mimic abundance). Together, our422

results suggest that imperfect mimicry can lead to ecologically stable dynamics across different423

mimicry systems, offering new insights into how mimicry persists in nature.424

Our results provide a mechanistic perspective on the ”eye of the beholder hypothesis”425

(Cuthill & Bennett, 1993, Dittrich et al., 1993), which proposes that mimicry deemed imperfect by426

human observers may be functionally effective from the perspective of the predator. Specifically,427

our abundance-dependent recognition framework demonstrates that predators tend to perceive a428

higher level of realized similarity than what is suggested by morphology alone (i.e., kreal, j ≥ kj).429

Our formulation of abundance-dependent recognition echoes Müller’s original idea that the inclu-430

sion of more unprofitable prey strengthens the protective benefits of aposematic signals (Müller,431

1879), and it aligns with the principles of Pavlovian conditioning, in which repeated signal expo-432

sures reinforce learned associations. Our abundance-dependent recognition also accommodates433

predator sensitivity to various prey categories through the parameter σj (Fig. S5). By incorporating434

prey abundance into predator recognition and mimicry dynamics, our framework extends beyond435

static morphological similarity and highlights an ecological dimension that human observers typ-436

ically overlook. This mismatch between predator and human perception helps explain how the437

”eye of the beholder” effect could emerge from predator decision–making behavior.438

Our results from the single Batesian mimicry system illustrates that imperfect mimicry could439
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promote mimic abundance, leading to the prediction that mimics in simple Batesian systems should440

generally exhibit intermediate resemblance to their model. This aligns with recent empirical find-441

ings showing that imperfect mimicry is more evolutionarily stable than perfect mimicry (Kelly442

et al., 2025). In contrast, our results from the multi-mimicry system suggest that while Müllerian443

mimics alone should achieve higher similarity, the interplay between different mimic types can444

generate more complicated dynamics. Empirical studies also indirectly support this idea: Mülle-445

rian mimicry rings could include dozens of species with varying degrees of resemblance and even446

overlapping traits across different mimicry rings (Wilson et al., 2012, 2022, Motyka et al., 2020),447

potentially due to the existence of Batesian mimics or quasi-Müllerian mimics in the mimicry com-448

plex. Therefore, based on our theoretical results, we hypothesize that Müllerian mimics in nature449

may exhibit a greater diversity of aposematic signals when Batesian mimics or quasi-Müllerian450

mimics are also involved. This prediction can be tested empirically by comparing the trait diversity451

among Müllerian mimics across different multi-mimicry complexes.452

Our predictions regarding the benefits of imperfect mimicry can be tested by meta-analysis453

of behavior experiments and comparative analysis of trait data. For example, a meta-analysis454

on mimic–model morphological similarity could examine if Müllerian mimics typically exhibit a455

higher similarity with the model, while single Batesian mimicry systems are more likely to exhibit456

intermediate similarity with the model. One can analyze morphological traits such as color, pat-457

tern, or other aposematic signals to characterize the similarity between mimics and models (Eliason458

et al., 2019, Maia et al., 2019, Kelly et al., 2021), thereby providing a basis to evaluate whether empir-459

ical systems align with theoretical predictions. In addition, combining trait data with phylogenetic460

information can reveal whether the aposematic signal is under selection (Eliason et al., 2019). In461

Müllerian mimicry systems, we expect strong directional selection on these traits with model and462

mimic converging to one aposematic signal. In contrast, we expect predation-driven selection in463

Batesian mimicry systems to stabilize traits at intermediate similarity. These predictions can be464

tested through behavior experiments, such as assessing predator attack probabilities on an array465

of mimics with various degrees of similarity (Tseng et al., 2014); our predictions will be supported466

if the mimic with intermediate similarity suffers the least attack.467

Finally, we encourage future work to explicitly integrate aposematic traits into the theoretical468
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framework of mimicry dynamics (Holen & Johnstone, 2004, Tomizuka & Tachiki, 2024). One469

promising approach is to replace the similarity parameter in our model with species trait distance470

in a multi-dimensional trait space. This trait-explicit framework would provide a more mechanistic471

interpretation of the mimic–model similarity parameter and avoid potential artifacts arising from472

the phenomenological linkage between attack probabilities in signal detection theory. For instance,473

in our current framework, the attack probabilities of the two mimics are indirectly constrained474

by their linkage to the model’s attack probability (see Appendix C), which can create abrupt475

abundance drops at low similarity values that do not reflect biologically optimal predator behavior476

(Fig. 4C). Furthermore, a trait-explicit framework allows the investigation of eco-evolutionary477

feedback dynamics (Tomizuka & Tachiki, 2024), where mimic trait distributions evolve under478

selection imposed by predators. Such a framework could further help determine not only the479

ecological stability but also the evolutionary persistence of imperfect mimicry. Overall, our study480

underscores the significance of considering predator recognition and population dynamics into481

mimicry theory, offering new insights into how imperfect mimicry can be maintained in natural,482

complex mimicry systems.483
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Appendix A Equations for the single and the two-mimic system2

The single-mimic system contains a Batesian mimic (Nc), model (Nm), predator (Np), and the3

alternative prey (Nn). The explicit equations for the single-mimic system are as follows (note that4

the secondary subscript j in Ncj and associated parameters are omitted for simplicity):5

dNp

dt
= Np

[
s(Ncpcvc + Nmpmvm + Nnpnvn)

1 + s(Ncpchc + Nmpmhm + Nnpnhn)
− µp

]
(S1-1)

dNc

dt
= rcNc

(
1 − Nc

Kc

)
− Np

[
sNcpc

1 + s(Ncpchc + Nmpmhm + Nnpnhn)

]
(S1-2)

dNm

dt
= rmNm

(
1 − Nm

Km

)
− Np

[
sNmpm

1 + s(Ncpchc + Nmpmhm + Nnpnhn)

]
(S1-3)

dNn

dt
= D(Sn − Nn) − Np

[
sNnpn

1 + s(Ncpchc + Nmpmhm + Nnpnhn)

]
. (S1-4)

The two-mimic system contains two types of mimics (secondary subscript j reintroduced to6

distinguish them), with Nc1 as the Batesian mimic and Nc2 as the Müllerian mimic. The explicit7

equations for the two-mimic system are as follows:8

dNp

dt
= Np

[
s(Nc1pc1vc1 + Nc2pc2vc2 + Nmpmvm + Nnpnvn)

1 + s(Nc1pc1hc1 + Nc2pc2hc2 + Nmpmhm + Nnpnhn)
− µp

]
(S2-1)

dNc1

dt
= rc1Nc1

(
1 − Nc1

Kc1

)
− Np

[
sNc1pc1

1 + s(Nc1pc1hc1 + Nc2pc2hc2 + Nmpmhm + Nnpnhn)

]
(S2-2)

dNc2

dt
= rc2Nc2

(
1 − Nc2

Kc2

)
− Np

[
sNc2pc2

1 + s(Nc1pc1hc1 + Nc2pc2hc2 + Nmpmhm + Nnpnhn)

]
(S2-3)

dNm

dt
= rmNm

(
1 − Nm

Km

)
− Np

[
sNmpm

1 + s(Nc1pc1hc1 + Nc2pc2hc2 + Nmpmhm + Nnpnhn)

]
(S2-4)

dNn

dt
= D(Sn − Nn) − Np

[
sNnpn

1 + s(Nc1pc1hc1 + Nc2pc2hc2 + Nmpmhm + Nnpnhn)

]
. (S2-5)

9
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Appendix B Analytical criteria for diet shifting10

Optimal foraging theory is a key component of our theoretical framework, producing cycling11

behavior in both single Batesian mimicry and multi-mimic systems. Here we present the analytical12

criteria and simulation results for this cycling behavior in different systems.13

Diet shift criterion for single Batesian mimic system14

In the single Batesian mimicry framework, we illustrated two mechanisms that produce cycles:15

diet shift and predator–prey interaction. In Fig. 2A, we show that a diet shift cycle could happen16

when k < 0.2 and 0.88 < k < 0.94. Here, for the single Batesian mimicry system, we derive the17

analytical criterion for predators to include the alternative prey in their diet when the mimicry18

complex is determined to be the more profitable food. The energy gained by predators under19

different diet compositions is as follows:20

Gn =
vnNn

1 + hnNn
(S3)

Gmc =
vmpmNm + vcpcNc

1 + hmpmNm + hcpcNc
(S4)

Gmcn =
vnNn + vmpmNm + vcpcNc

1 + hnNn + hmpmNm + hcpcNc
. (S5)

Here, Gn, Gmc, and Gmcn represent the energy gain when the predator diet consists of only the21

alternative prey, only the mimicry complex, and all three prey items, respectively. For predators to22

include alternative prey into the diet when it currently only consumes the mimicry complex, the23

gain from including all three species has to be greater than that when only including mimics and24

models, i.e., Gmcn > Gmc. By rearranging the terms, we arrive at the following criterion:25

vmpmNm + vcpcNc

1 + hmpmNm + hcpcNc
<

vn

hn
. (S6)

This result shows that switching from Gmc to Gmcn requires the profitability of the alternative26

prey to be greater than the energy gain obtained from only consuming the mimicry species pair.27

In Figure S1, we show a time series illustrating the diet shift from Gmcn to Gmc (i.e., pn switches28

3
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between 1 to 0, respectively) when k = 0.1 (see also Fig. 2A). Notably, we depict our analytical29

derivation with gray strips in Figure S1, showing that the analytic criterion matches the time points30

of diet switching in the simulation result.31
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Figure S1: Time series plots showing the (A) diet switching criterion and (B) probability
of consuming the alternative prey (pn) in a single Batesian mimicry system with k = 0.1.
Here, we show the diet switching behavior from only consuming the mimicry species
pair (Gmc) to including the alternative prey (Gmcn). The x-axis shows time step 1181 to
1187 (with integration step size 0.02). The black line in panel A is the consumption rate
of attacking only the mimicry complex and the red line shows the profitability of the
alternative prey (constant vn

hn
). The blue line in panel B is the probability of attacking

the alternative prey (pn). Grey strips indicate the time period when the switching
criterion is met, thereby inducing a diet switch. The parameter values are identical to
those in the main text, see section Numerical simulations for details.

Besides showing the criterion for a predator to switch from only consuming the mimicry32

complex to consuming all three prey species (i.e., the inclusion of the alternative prey), we also33
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provide the criterion for when a predator will switch its diet from consuming only alternative prey34

to consuming all three prey species (i.e., the inclusion of the mimicry pair). The criterion for the35

predator to switch diet is Gmcn > Gn, which corresponds to:36

Nn <
vmpmNm + vcpcNc

(hmvn − hnvm) pmNm + (hcvn − hnvc) pcNc
(S7)

Regime shift criterion for multi-mimic system37

For the multi-mimic system, Figure 4 shows that there is a boundary separating two dynamical38

regimes. The two regimes are characterized by whether the alternative prey is always included in39

the predator’s diet or not (Fig. 4J). In the consistent alternative prey inclusion regime (top-left of40

Fig. 4), the energy gain can is as follows:41

Gmc1c2n =
vnNn + vmpmNm + vc1pc1Nc1 + vc2pc2Nc2

1 + hnNn + hmpmNm + hc1pc1Nc1 + hc2pc2Nc2
. (S8)

We could also write out the energy gain term in the occasional alternative prey exclusion regime42

(bottom-right of Fig. 4), where the predator always incorporates the mimicry complex but does43

not always incorporate the alternative prey:44

Gmc1c2nϕ
= ϕ[

vnNn + vmNm + vc1Nc1 + vc2Nc2

1 + hnNn + hmNm + hc1Nc1 + hc2Nc2
] + (1 − ϕ)[

vmNm + vc1Nc1 + vc2Nc2

1 + hmNm + hc1Nc1 + hc2Nc2
].

(S9)

Here, ϕ is the proportion of time that the alternative prey is included in the diet, which can be45

obtained by the long-term average of pn since it is a binary variable. When Gmc1c2n > Gmc1c2nϕ
, the46

system enters the consistent alternative prey inclusion regime with stable dynamics. Conversely,47

when Gmc1c2n < Gmc1c2nϕ
, the system enters the occasional alternative prey exclusion regime with48

unstable dynamics. Note that the white outline in Fig. 4 was drawn based on the above criterion,49

with ϕ equal to the average pn obtained from the simulation.50
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Appendix C Caution against multi-species signal detection theory51

In the multi-mimicry system, we incorporated signal detection theory for the two mimic species52

independently as:53

pc1 = pk1
m (S10)

pc2 = pk2
m . (S11)

This expression could be rewritten as:54

pc1 = p
k1
k2
c2 . (S12)

Under this expression, numeric artifacts may occur when both k1 and k2 are low as the attack55

probabilities of the two mimics are indirectly constrained. Consider the case where k1 = 056

and k2 = 0, which represents the scenario in which the predator could perfectly distinguish57

between the Batesian mimic, the Müllerian mimic, and the model. When the predator is capable58

of distinguishing between all prey items, one would intuitively expect that predators should only59

attack the Batesian mimic; indeed, the optimal foraging theory results in pc1 = 1. However, with60

pm becoming 0 given k1 = 0, the fact that k2 = 0 numerically guarantees that pc2 = 1 (lower-61

left region of Figs 4C and ??C). This conflict between biological intuition and numeric results62

comes from the direct multi-species extension of the signal detection theory, and can be seen63

in the lower left of Figs 4 and ??. We note that abundance-dependent recognition can partially64

resolve this numerical artifact, since the realized similarity kreal, j will deviate from the low innate65

morphological similarity and achieve an intermediate value. To further resolve this artifact, a66

trait-based approach could be a promising alternative approach to model multi-mimicry systems,67

as mentioned in the Discussion.68
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Supplementary Figures69
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Figure S2: The effect of the model species value (vm; x-axis) and the mimic–model sim-
ilarity (k; y-axis) on the single Batesian mimicry system without abundance-dependent
similarity. A lower model value indicates a lower profitability of consuming the model,
which also influences the collective profitability of the mimic–model species pair; note
the default value in the main text is vm = 0. Different panels represent different vari-
ables: (A) mimic abundance (Nc), (B) model abundance (Nm), (C) predator abundance
(Np), (D) the attacked probability on the mimic (pc), (E) the attacked probability on the
model (pm), and (F) the log(variance) of the predator abundance fluctuation, serving as
an indicator of whether the system is cycling or not. See section Numerical simulations
for parameter details.
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Figure S3: Time series of species abundances in a four-mimicry system where predator
recognition is based solely on mimic–model morphological similarity (kcj ). The system
includes: two Batesian mimics (Nc1 and Nc3 ; orange and light orange, respectively) and
two Müllerian mimics (Nc2 and Nc4 ; green and light green, respectively), the model
(Nm; light blue), the predator (Np; red), and the alternative prey (Nn; dark blue). Note
that the abundance of predators is divided by four for better visualization. Similarity
(kcj ) values as follows: kc1 = 0.4, kc2 = 0.9, kc3 = 0.5, and kc4 = 0.6. Other parameter
follow the main text, with additional parameters for Nc3 and Nc4 including: vc3 = 2.5,
vc4 = 0, hc3 = hc4 = 1, rc3 = rc4 = 2, and Kc3 = Kc4 = 10.
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Figure S4: The effect of the Batesian mimic–model similarity (k1; x-axis) and the Mül-
lerian mimic–model similarity (k2; y-axis) on the multi-mimicry system when recogni-
tion depends solely on morphological similarity (i.e., without abundance-dependent
recognition). The different panels represent different variables: (A) Batesian mimic
abundance (Nc1), (B) attack probability on the Batesian mimic (pc1), (C) the Müllerian
mimic abundance (Nc2), (D) attack probability on the Müllerian mimic (pc2), (E) model
abundance (Nm), (F) attack probability on the mimic (pm), (G) the log(variance) of
the predator fluctuations, serving as an indicator of community stability, and (H) the
attack probability on the alternative prey (pn). Note that the abundances of different
state variables are on different scales to better show the pattern of each variable. See
main text for other parameter values.
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Figure S5: The effect of predator sensitivity to prey categories (σ; x-axis) and the mimic–
model morphological similarity (k; y-axis) on the single Batesian mimicry system with
abundance-dependent similarity. The different panels represent different variables:
(A) Batesian mimic abundance (Nc), (B) attack probability on the Batesian mimic (pc),
(C) the model abundance (Nm), (D) attack probability on the model (pm), (E) predator
abundance (Np), (F) the log(variance) of the predator abundance fluctuation as an
indicator of system stability, (G) alternative prey abundance (Nn), and (H) the realized
similarity due to abundance-dependent recognition (pn). Note that the abundances
of different state variables are on different scales to better show the pattern of each
variable. See main text for other parameter values.
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