

Predator decision-making shapes the dynamics and stability of mimicry systems

Yi Sun^{1, 2} and Po-Ju Ke^{1, †}

¹Institute of Ecology and Evolutionary Biology, National Taiwan University, Taiwan

²Institute of Organismic and Molecular Evolution, University of Mainz, Germany

Total word count for main body of text: 5990

Number of color figures: 5

ORCID information:

Po-Ju Ke: 0000-0002-8371-7984

Yi Sun: 0000-0002-0349-2915

Acknowledgements: We thank Chun-Wei Chang, Hsi-Cheng Ho, Chi-Yun Kuo, Hui-Yun Tseng, Ching-Lin Huang, Yu-Pei Tseng, Joe Wan, Shan-Min Chen, Yu-Chen Chen, and members of the Ke Lab for comments on early drafts of the manuscript. This study is supported by the Taiwan Ministry of Education Yushan Fellow Program (MOE-110-YSFAG-0003-001-P1) and the Taiwan National Science and Technology Council (MOST 111-2621-B-002-001-MY3 and NSTC 114-2628-B-002-023-).

Conflict of Interest: The authors have no conflicts of interest.

Author contribution: YS conceived the study; YS conducted the simulations with assistance

† Correspondence author: pojuke@ntu.edu.tw; +886-33662467

from PJK; YS and PJK wrote the manuscript; both authors contributed to the final version of the manuscript.

Open research statement: All simulation R-scripts used to generate the results are archived on Zenodo with a permanent DOI:10.5281/zenodo.17234680.

1 Abstract

2 Mimicry is an anti-predator strategy in which prey species (the mimic) resemble an unprofitable
3 species (the model) to deceive predators. Despite theoretical expectations for perfect mimicry,
4 imperfect mimicry, where the mimic resembles its model imperfectly, is widespread in nature. To
5 understand how imperfect mimicry can persist ecologically, we studied the effect of different pred-
6 tor recognition processes on the dynamics and stability of various mimicry systems. Specifically,
7 we extended a dynamical model that integrates optimal foraging and signal detection theories
8 by introducing a novel abundance-dependent recognition mechanism, where predators' percep-
9 tion of the similarity between mimic and model is influenced by the relative abundance of prey
10 types. We demonstrate that intermediate similarity promotes stable community dynamics and
11 increases mimic abundance in single Batesian mimicry systems. Moreover, abundance-dependent
12 recognition leads predators to reduce attack on mimics with low morphological similarity, further
13 contributing to system stability. Extending the framework to a multi-mimicry system, we find that
14 Batesian and Müllerian mimics have contrasting effects: intermediate Batesian similarity continues
15 to stabilize the system, while high Müllerian similarity provides additional protection and can off-
16 set destabilization caused by highly similar Batesian mimics. Our study offers a novel explanation
17 for the prevalence of imperfect mimicry in nature and highlights how recognition processes shape
18 the ecological stability of mimicry systems.

19

20

21 **Keywords:** Batesian mimicry, imperfect mimicry, Mimicry complex, morphological similarity,
22 Müllerian mimicry, signal detection theory, optimal foraging theory

23 Introduction

24 Mimicry is a complex anti-predator adaptation that involves interactions among three main players:
25 the mimic, the model, and the predator (Ruxton *et al.*, 2004, Quicke, 2017). In this system, the model
26 is an unprofitable prey that displays aposematic signals to advertise its unprofitability. The mimic,
27 on the other hand, displays phenotypes that resemble those of the model, including behavior,
28 chemical compounds, and, more commonly, morphological characteristics such as color, pattern,
29 and shape (Kikuchi *et al.*, 2013). These phenotypes deceive predators into misidentifying the mimic
30 as the unprofitable model. One can categorize a mimicry system based on the mimic's profitability
31 to the predator, with Batesian and Müllerian mimicry being the two most widely recognized forms.
32 In Batesian mimicry, the mimic is a profitable prey that reduces its predation risk by resembling
33 an unprofitable model. However, the model in this system involuntarily suffers higher mortality
34 as the presence of the Batesian mimic confuses the predators, thereby reducing the effectiveness of
35 the model's aposematic display (Bates, 1862). In Müllerian mimicry, the mimic is an unprofitable
36 prey that shares a common aposematic signal with the model. Unlike Batesian mimicry, both the
37 mimic and the model benefit from their resemblance in Müllerian mimicry due to the positive
38 reinforcement of the aposematic signal (Müller, 1879, Vane-wright, 1980, Mallet & Joron, 1999,
39 Ruxton *et al.*, 2004). It has been suggested that natural selection should favor mimics that closely
40 resemble their model in both mimicry systems, resulting in highly similar mimic–model pairs
41 (Nur, 1970, Sherratt, 2002, Ruxton *et al.*, 2018). However, empirical evidence shows that many
42 mimics do not closely resemble their models despite the apparent advantage of high similarity, a
43 phenomenon known as imperfect mimicry (Sherratt, 2002, Kikuchi *et al.*, 2013, Sherratt & Peet-Paré,
44 2017, Bosque *et al.*, 2018, McLean *et al.*, 2019).

45 This contradictory phenomenon raises the question: what mechanisms allow imperfect
46 mimicry to persist in nature? Many hypotheses and theories have been proposed to explain
47 the existence of imperfect mimicry (Penney *et al.*, 2012, Pfennig & Kikuchi, 2012, Kikuchi *et al.*,
48 2013). On one hand, evolutionary explanations, such as the "chase-away" hypothesis, predict
49 that imperfect mimicry exists because models evolve away from their mimic (Nur, 1970, Oaten
50 *et al.*, 1975, McGuire *et al.*, 2006, Franks *et al.*, 2009, Akcali *et al.*, 2018) (also see Sherratt (2002),
51 Penney *et al.* (2012), Johnstone (2002), Pfennig & Mullen (2010), Tomizuka & Tachiki (2024) for

52 more evolutionary hypotheses). On the other hand, ecological explanations, such as the "eye of
53 the beholder" hypothesis, argue that what is perceived as imperfect mimicry by humans may in
54 fact be effective from the perspective of the predator (Cuthill & Bennett, 1993, Dittrich *et al.*, 1993).
55 Furthermore, the "multiple models and multiple predators" hypothesis suggests that imperfect
56 mimicry could arise either because the mimic resembles multiple models or because multiple
57 predators rely on different signals to detect the mimic (Edmunds, 2000, Sherratt, 2002, Pekár *et al.*,
58 2011). As a result, the mimic might resemble many aposematic signals from different models,
59 resulting in a signal that partially resembles several model species but does not closely match any
60 single one (also see Kikuchi *et al.*, 2013 for additional ecological hypotheses).

61 In addition to morphological similarities, different types of predator recognition processes
62 could also influence the dynamics of mimicry systems (Darst, 2006, Chittka & Osorio, 2007). These
63 recognition processes shape the realized similarity perceived by the predator, which may differ
64 from the actual mimic–model morphological similarity. Predator recognition can be affected
65 by the learning efficiency of the predator (Huheey, 1964) or by the abundance of different prey
66 items (Nelson *et al.*, 2010). Müllerian mimicry is a classic example of such abundance-dependent
67 recognition — a higher abundance of unprofitable mimics increases predator encounters and
68 reinforces the association between the aposematic signal and unprofitability (Müller, 1879). This
69 type of abundance-dependent recognition is particularly important on an ecological timescale
70 as it creates intricate feedback between prey abundance, predator recognition, predator attack
71 decisions, and subsequent community dynamics.

72 Despite numerous hypotheses being proposed to address the emergence of imperfect mimicry,
73 its effects on population dynamics and the stability of mimicry systems remain unclear. Under-
74 standing these ecological mechanisms and their consequences clarifies how imperfect mimicry
75 persists over short ecological timescales, which is essential for setting the stage for its evolution
76 over longer timescales. Previous theoretical studies addressing the stability of mimicry systems
77 often lacked comprehensive dynamics of the entire system: some overlooked the dynamics of the
78 predator (e.g., Getty, 1985), while others omitted both the predator and the non-mimetic alternative
79 prey (e.g., Yamauchi, 1993, Kumazawa *et al.*, 2006). Other studies have focused on how mimicry
80 dynamics are shaped by factors such as the influx of alternative prey, the degree of similarity

81 between the mimic and the model, and the level of defense equipped by the model species (Brower
82 & Moffitt, 1974, Rowell-Rahier *et al.*, 1995, Kikuchi *et al.*, 2022). Many of these theoretical studies
83 employed optimal foraging theory, which assumes that predators make attack decisions based on
84 properties of the prey items (i.e., their profitability and abundance; Charnov, 1973, 1976, Stephens
85 & Krebs, 1986).

86 Although previous theoretical studies on mimicry population dynamics have mostly focused
87 on single Batesian mimic system based on morphological similarity, natural mimicry often forms
88 multi-mimicry complexes involving multiple types of mimicries and various recognition processes.
89 Specifically, multi-mimicry complexes involving both Batesian mimicry and Müllerian mimicry
90 are common in nature (e.g., *Heliconius* butterfly Quicke, 2017 and *Pachyrhynchus* weevils Schultze,
91 1923), where abundance-dependent recognition may also play an important role. With a greater
92 number of prey types involved, the predator needs to juggle between multiple mimic–model
93 similarities and prey profitabilities when making attack decisions. Importantly, Müllerian mimics
94 differ fundamentally from Batesian mimics: the resemblance between the Müllerian mimic and the
95 model produces a positive reinforcement that provides both species greater protection, whereas
96 the resemblance between the Batesian mimic and the model imposes a cost on the model species.
97 Therefore, Batesian and Müllerian mimics may differentially influence the dynamics of the multi-
98 mimicry system. To investigate the persistence of imperfect mimicry in natural systems with both
99 Batesian mimicry and Müllerian mimicry, it is essential to consider the interactive effect of their
100 similarity with the model and their profitability for the predator.

101 Here, we extended the framework proposed by Kikuchi *et al.* (2022), which offers an exciting
102 opportunity to investigate the persistence of imperfect mimicry and its resulting community dy-
103 namics by integrating optimal foraging theory into a dynamical model of the full mimicry system.
104 By exploring the impact of mimic–model similarity in a single Batesian mimicry system, we offer a
105 novel perspective on the ecological dynamics of mimicry systems: imperfect mimicry can stabilize
106 community dynamics and lead to a higher mimic abundance. We then explore how this stability
107 pattern conferred by imperfect mimicry varied with different predator recognition mechanisms.
108 To this end, we formulated a novel phenomenological representation of the predator’s recognition
109 process, which depends on both the innate mimic–model similarity (i.e., morphological similarity

110 based on prey traits) and the abundance ratio of the mimic and the model. Finally, we expanded the
111 framework to a multi-mimicry system encompassing both Batesian and Müllerian mimicry. We ex-
112 plored how the dynamics of the multi-mimicry system are influenced by the similarities between
113 different mimics and the model under the aforementioned abundance-dependent recognition-
114 determining process. Overall, we show that imperfect mimicry can, counterintuitively, promote
115 higher mimic abundance and greater stability across a range of mimicry systems that differ in
116 predator recognition mechanism and the number of mimic species involved.

117 **Method**

118 We used a theoretical model to study how mimic–model similarity and different predator recogni-
119 tion processes influence predation decisions and the dynamics of mimicry systems. Our ordinary
120 differential equation (ODE) model is built upon the theoretical framework of Kikuchi *et al.* (2022),
121 which combines optimal foraging theory and signal detection theory to simulate the dynamics of
122 mimicry systems. We extended this framework to investigate how mimic–model similarity and
123 predators’ abundance-dependent recognition influence the abundance of mimic species and the
124 stability of the system through predator decision-making (Fig. 1). In the following sections, we first
125 introduce the foundations determining the predator decision-making process, including optimal
126 foraging theory, signal detection theory, and abundance-dependent recognition. We then present
127 the population dynamic framework that governs the abundance of species within the mimicry
128 system. Finally, we describe the numerical setup used in our study.

129 **Predator decision-making process**

130 **Optimal foraging theory**

131 We followed the classic assumption that predators determine their probability (p_i) of attacking
132 three different types of prey items – mimics (N_{c_j} ; $j = 1, 2, \dots, n$), model (N_m), and alternative
133 prey (N_n) – through optimal foraging theory (Charnov, 1973, 1976; Fig. 1A). Assuming a multi-
134 prey Holling type-II functional response, the term that predators attempt to optimize while making

135 foraging decisions is:

$$\frac{s \left(\sum_j N_{c_j} p_{c_j} v_{c_j} + N_m p_m v_m + N_n p_n v_n \right)}{1 + s \left(\sum_j N_{c_j} p_{c_j} h_{c_j} + N_m p_m h_m + N_n p_n h_n \right)}. \quad (1)$$

136 Here, p_i represents the probability of the predator attacking prey item i ($i = c_j, m, n$ for mimics,
 137 model, and alternative prey, respectively). The parameter v_i represents the value that the predator
 138 gains from consuming one individual of prey item i , whereas h_i represents the time predators
 139 spend handling one individual of prey item i . Therefore, each $N_i p_i v_i$ term in the numerator
 140 represents the value gain of consuming species i , whereas each $N_i p_i h_i$ term in the denominator
 141 represents the cost of consuming species i . The parameter s represents the predator's search rate,
 142 which is assumed to be equal for all prey items. Here, we defined a prey item's profitability
 143 based on its $\frac{v_i}{h_i}$ (Charnov, 1976). We further assumed that at least one mimic species is a Batesian
 144 mimic and will have the highest profitability, followed by the alternative prey, and, finally, the
 145 model. Therefore, when there is only one mimic species (i.e., the Batesian mimic; $j = 1$), this
 146 parameterization ensures that $\frac{v_{c_1}}{h_{c_1}} > \frac{v_n}{h_n} > \frac{v_m}{h_m}$, i.e., the (Batesian) mimic will be the most profitable
 147 prey. In classic optimal foraging theory, which assumes that predators have complete information
 148 about the system and can instantaneously recognize different prey types, predator behavior always
 149 follows an all-or-nothing manner (Charnov, 1976, Stephens & Krebs, 1986). That is, predators will
 150 either always include that prey in their diet ($p_i = 1$) or never include that prey in their diet
 151 ($p_i = 0$) upon encounter, with a decision-switching threshold determined by the profitability and
 152 abundance of prey items (Stephens & Krebs, 1986).

153 **Signal detection theory**

154 In mimicry systems, however, predators may experience difficulty in distinguishing between the
 155 mimic and the model. Such imperfect information results in a non-binary consumption probability
 156 due to the numerical connection between p_{c_j} and p_m . Mathematically, this means that the predator
 157 cannot make independent decisions on p_{c_j} and p_m to optimize eq. 1; (Getty, 1985, Kikuchi *et al.*,
 158 2022). One can first assume that the predator has a fixed recognition ability, which, in the simplest

159 case, depends solely on the morphological similarity between the mimic and the model. Following
160 Getty (1985), the probabilities of attacking the mimic and the model are linked by a power law
161 function:

$$p_{c_j} = p_m^{k_j}, \quad (2)$$

162 with the exponent $k_j \in [0, 1]$ representing the morphological similarity between mimic N_{c_j} and
163 the model N_m (Fig. 1B). When $k_j = 0$, the predator can distinguish between the mimic and the
164 model perfectly, indicating complete discriminability from the predator's perspective. Following
165 classic optimal foraging, in a single Batesian mimic system (i.e., $j = 1$), the predator will always
166 attack the mimic ($p_{c_1} = 1$) due to its higher profitability (i.e., $\frac{v_{c_1}}{h_{c_1}} > \frac{v_m}{h_m}$). On the other end of
167 the spectrum, the two prey items are morphologically identical from the predator's perspective
168 when $k_j = 1$ (i.e., perfect mimicry); the predator would treat the mimic and the model as the
169 same species and either attack or reject them altogether ($p_{c_j} = p_m = 0$ or 1). However, in most
170 natural cases, mimicry falls between the two extreme cases, and k_j will be a number between
171 0 and 1. Here, $0 < k_j < 1$ represents the scenario when imperfect information interferes with
172 optimal foraging decision-making, leading to non-binary optimal foraging decisions (i.e., $0 < p_{c_j},$
173 $p_m < 1$). As k_j approaches one, predators experience greater difficulty distinguishing the mimic
174 from the model, leading to a higher likelihood of attacking the wrong prey (i.e., a higher perceived
175 mimic–model similarity). For our purpose, we defined intermediate similarity as $0.5 < k_j < 0.8$.
176 At the same time, the attack probability of the alternative prey remains consistent with the classic
177 optimal foraging theory (i.e., $p_n = 0$ or 1).

178 Abundance-dependent predator recognition

179 In addition to the morphological similarity between the mimic and the model, we considered
180 a novel predator recognition process that determines the predator's realized similarity $k_{real,j}$
181 based on three factors. First, the realized similarity is constrained by the innate morphological
182 similarity between mimics and the model, which corresponds to k_j in eq. 2 and represents the
183 lowest value (highest distinguishability) that $k_{real,j}$ can achieve. Second, the realized similarity
184 is influenced by the abundance ratio of two prey categories: profitable ($\frac{v_i}{h_i} > 0$) and unprofitable

185 ($\frac{v_i}{h_i} \leq 0$) prey. When unprofitable prey is significantly more abundant than profitable prey,
 186 predators interacting with this mimicry complex are more likely to encounter unprofitable prey.
 187 This causes the predator to associate the shared morphological traits with the unprofitable prey,
 188 thereby perceiving both prey types as unprofitable prey. The opposite outcome occurs when the
 189 abundance of the profitable prey is significantly higher than that of the unprofitable prey — the
 190 predator will perceive both prey types as the more abundant profitable prey. However, when the
 191 two prey categories have a similar abundance, the predator will encounter an equal amount of both
 192 prey types; the resulting realized similarity will not be biased by prey abundance imbalance but
 193 instead be determined by the innate mimic–model morphological similarity. Finally, a third factor,
 194 σ_j , controls the sensitivity of the predator recognition to the ratio of prey abundance. To represent
 195 this predator recognition process, we formulated the following abundance-dependent recognition
 196 function, which phenomenologically characterizes how the realized similarity is affected by the
 197 three aforementioned factors:

$$k_{real,j} = 1 - (1 - k_j) \times \exp \left[- \frac{\left(\log \frac{N_m + \sum_j (1 - \delta_j) N_{c_j}}{\sum_j \delta_j N_{c_j}} \right)^2}{2\sigma_j^2} \right], \quad (3)$$

198 with $\delta_j = 0$ if the profitability of N_{c_j} is equal or smaller than 0 and $\delta_j = 1$ if the profitability is
 199 greater than 0; the term within the logarithm thereby represents the abundance ratio of the two
 200 prey categories. In a two-mimicry system that contains a Batesian mimic (N_{c_1}) and a Müllerian
 201 mimic (N_{c_2}), the abundance ratio term becomes $(N_m + N_{c_2})/N_{c_1}$. When the innate morphological
 202 similarity does not constrain realized similarity, i.e., easily distinguishable mimic with $k_j = 0$,
 203 $k_{real,j}$ is solely determined by the abundance ratio of different prey categories and can vary freely
 204 between 0 and 1 (lower curve in Fig. 1C). As the innate morphological similarity k_j approaches 1
 205 (i.e., mimics become hardly distinguishable), the realized similarity $k_{rec,j}$ becomes less responsive
 206 to prey abundance ratio (upper curve in Fig. 1C). The functional form of eq. 3 implies that $k_{real,j}$
 207 approaches 1 when the abundance of the unprofitable and profitable prey is highly unbalanced
 208 (i.e., when $(N_m + \sum_j (1 - \delta_j) N_{c_j})/\sum_j \delta_j N_{c_j}$ approaches 0 or ∞). Under such a scenario, the predator
 209 treats the two prey categories as if both were the more abundant prey category: with optimal

210 foraging, both are treated as the profitable prey if the abundance ratio approaches 0, and both are
 211 treated as the unprofitable prey if the ratio approaches ∞ .

212 **Mimicry dynamic system**

213 Finally, we incorporated optimal foraging theory, signal detection theory, and our novel abundance-
 214 dependent recognition function into a multi-mimicry dynamical system. We simulate the dynam-
 215 ics between mimics ($N_{c_j}; j = 1, 2, \dots, n$), the model (N_m), the predator (N_p), and an alternative
 216 prey (N_n):

$$\frac{dN_p}{dt} = N_p \left[\frac{s \left(\sum_j N_{c_j} p_{c_j} v_{c_j} + N_m p_m v_m + N_n p_n v_n \right)}{1 + s \left(\sum_j N_{c_j} p_{c_j} h_{c_j} + N_m p_m h_m + N_n p_n h_n \right)} - \mu_p \right] \quad (4-1)$$

$$\frac{dN_{c_j}}{dt} = r_{c_j} N_{c_j} \left(1 - \frac{N_{c_j}}{K_{c_j}} \right) - N_p \left[\frac{s N_{c_j} p_{c_j}}{1 + s \left(\sum_j N_{c_j} p_{c_j} h_{c_j} + N_m p_m h_m + N_n p_n h_n \right)} \right] \quad (4-2)$$

$$\frac{dN_m}{dt} = r_m N_m \left(1 - \frac{N_m}{K_m} \right) - N_p \left[\frac{s N_m p_m}{1 + s \left(\sum_j N_{c_j} p_{c_j} h_{c_j} + N_m p_m h_m + N_n p_n h_n \right)} \right] \quad (4-3)$$

$$\frac{dN_n}{dt} = D(S_n - N_n) - N_p \left[\frac{s N_n p_n}{1 + s \left(\sum_j N_{c_j} p_{c_j} h_{c_j} + N_m p_m h_m + N_n p_n h_n \right)} \right]. \quad (4-4)$$

217 The per capita population growth rate of the predator consists of the consumption gain from
 218 optimal foraging (first term within the bracket in eq. 4-1) and the density-independent mortality
 219 rate μ_p (second term within the bracket in eq. 4-1). Specifically, the first term captures the
 220 total foraging gain the predator obtains from consuming various prey types, where the optimal
 221 combination of p_i is instantaneously adjusted at each time step to maximize the consumption gain
 222 (eq. 1) under the constraints imposed by signal detection theory (eq. 2) and abundance-dependent
 223 recognition (eq. 3). The mimics and the model grow logistically, with intrinsic growth rates r_{c_j}
 224 and r_m , and carrying capacity K_{c_j} and K_m , respectively. The population of the mimics and the
 225 model decreases due to predator consumption, which depends on the optimized probability p_{c_j}

226 and p_m , respectively (term within the bracket represents per predator consumption). Finally, we
 227 assumed that the alternative prey has an external population source, thus following chemostat
 228 dynamics with a continuous flux (D) and an external supply source (S_n); the predator also attacks
 229 the alternative prey with optimized probability p_n .

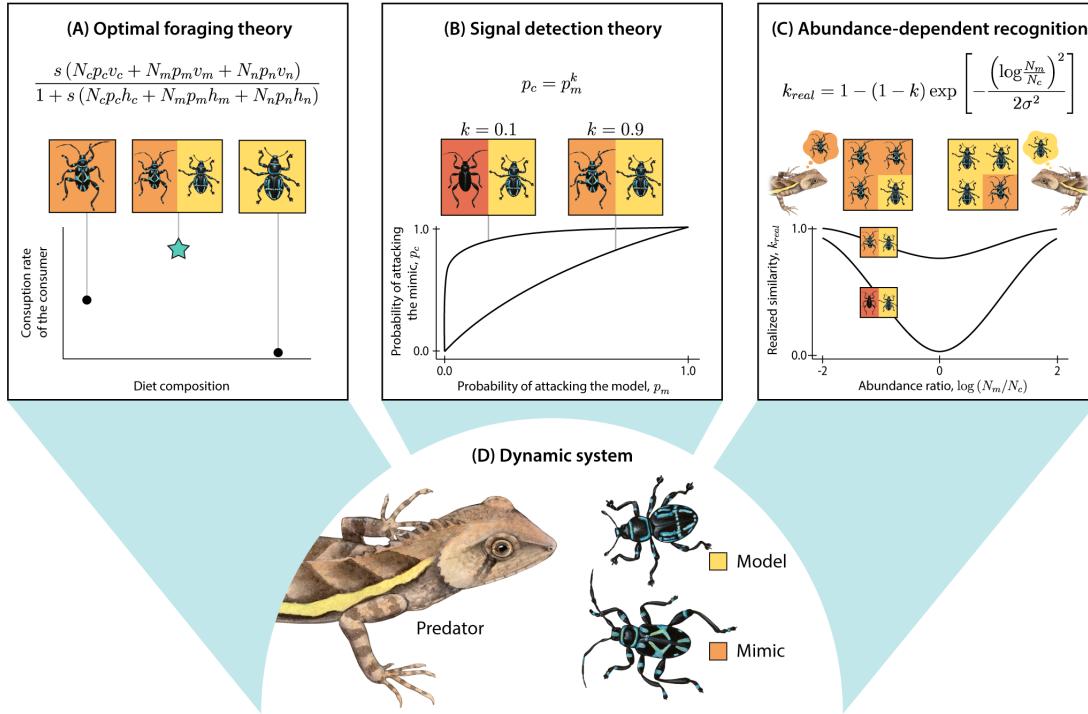


Figure 1: Illustrative figure demonstrating how our study incorporates (A) optimal foraging theory (i.e., predator optimizing attack probability p_i to maximize foraging gain), (B) signal detection theory (i.e., non-independence of attack probabilities via mimic–model morphological similarity k), and (C) abundance-dependent recognition (i.e., predator realized recognition k_{real} also dependent of model–mimic abundance ratio) into a (D) dynamic system of mimic–model–predator. Here, only a single Batesian mimic is shown for simplicity (so the secondary subscript j in N_{c_j} is omitted). In panels (B) and (C), we depict two scenarios with low ($k = 0.1$; red mimic) and high ($k = 0.9$; orange mimic) innate mimic–model morphological similarity k . See the main text for the mathematical description of the full multi-mimic model.

230 **Numerical simulations**

231 We simulated two different mimicry systems: (1) a single-mimic system with only the Batesian
 232 mimic (N_c), and (2) a multi-mimic system with both Batesian mimic (N_{c_1}) and Müllerian mimic
 233 (N_{c_2}). For simplicity, we omitted the secondary subscript j in N_{c_j} in the single-mimic model,
 234 but reintroduced it in the multi-mimic system (see Appendix A for the full equations). We used

235 the fourth-order Runge–Kutta method from package `deSolve` (Karline Soetaert *et al.*, 2010) to
236 numerically solve our dynamical system. In all simulations, the integration step size was set to
237 0.02 and the dynamics were simulated for 12,000 time steps. To incorporate optimal foraging,
238 the values of p_i were adjusted at each integration step by finding the optimal combination that
239 maximizes foraging gain (i.e., eq. 1). To better capture the nonlinear function form of eq. 2, the
240 maximum foraging gain was found by evaluating eq. 1 with a range of p_m (and corresponding p_{c_j})
241 values from 0 to 1 in increments of 0.0001. While a larger increment for p_m (e.g., 0.1) could accelerate
242 the numerical procedure, we note that it would lead to insufficient sampling along the nonlinear
243 curve. Parameters in the single-mimic system are as follows (note again secondary subscripts j were
244 omitted): $v_c = 1.6, v_n = 0.8, v_m = 0, h_c = h_n = h_m = 1$. The intrinsic growth rate and carrying
245 capacity of the mimic and the model are $r_c = r_m = 2$ and $K_c = K_m = 10$, respectively, and the
246 death rate of the predator is $\mu_p = 0.75$. The influx of the alternative prey is controlled by parameters
247 $S_n = 20$ and $D = 1$, and the search rate is $s = 1$. We used the following initial conditions for
248 all simulations: $N_p(0) = 0.5, N_c(0) = 1, N_m(0) = 10, N_n(0) = 20$. The parameters for the multi-
249 mimics system are set as follows (secondary subscripts j were reintroduced to distinguish the
250 two mimics): $r_{c_1} = r_{c_2} = r_m = 2; K_{c_1} = K_{c_2} = K_m = 10; v_{c_1} = 2.5, v_{c_2} = v_m = 0, v_n = 0.8;$
251 $h_{c_1} = h_{c_2} = h_m = h_n = 1; \mu_p = 0.75$, and $S_n = 20$. With $v_{c_2} = 0$, N_{c_2} is the Müllerian
252 mimic in the system, while N_{c_1} is the Batesian mimic with the highest profitability. The initial
253 conditions for the multi-mimics system are identical to those of the single mimicry system, with
254 $N_{c_1}(0) = N_{c_2}(0) = 1$.

255 To study the effect of mimic–model morphological similarity on community dynamics in the
256 single-mimic system, we explored k across the parameter range of 0 to 1 by an interval of 0.01. For
257 both the single-mimic and multi-mimicry systems, we studied the effect of abundance-dependent
258 recognition (eq. 3) by varying the morphological similarity (i.e., k for the single-mimic system and
259 both k_1 and k_2 for the multi-mimic system) from 0 to 1. All simulations were carried out using
260 R 4.3.3 (R Core Team, 2024). When presenting simulation results, the last 80% of each simulated
261 time series was used to calculate the mean and variance of each species' abundance, which were
262 then used to determine the stability and coexistence outcome of the system. Specifically, we set
263 the extinction threshold for each species as 10^{-10} . The stability threshold was set at 10^{-12} , i.e., the

264 system is considered stable if the variance of the predator population is less than 10^{-11} . Since the
265 predator interacts with all other prey and exhibits the highest population abundance, calculating
266 the variance of the predator population is sufficient to determine the stability of the system.

267 **Result**

268 **Single Batesian mimic system**

269 **Predator decision depending only on mimic–model morphological similarity**

270 We first explored the dynamics of a single Batesian mimicry system where the predator's decision
271 depends only on the morphological similarity between the mimic and the model (k ; Fig. 2A).
272 We showed that along the spectrum of mimic–model similarity (k ranging from 0 to 1), low
273 and high similarity produced cyclic dynamics while stable population dynamics were observed
274 under intermediate similarity. Moreover, intermediate similarity ($0.5 < k < 0.8$) also resulted
275 in higher predator and mimic abundance (red and orange, respectively, in Fig. 2A upper panel),
276 suggesting that intermediate similarity benefits the mimicry system in terms of stability and species
277 abundance. We discuss the dynamics below (see also Fig. 3 for detailed time series under different
278 k values).

279 When the similarity between the mimic and the model is zero (i.e., $k = 0$, left-most value in
280 Fig. 2A), the mimic and the model are treated as two different species by the predator. In this sce-
281 nario, cycles emerge from diet composition shifts: while predators always ignore the unprofitable
282 model ($\frac{v_m}{h_m} = 0$) and always attack the mimic due to its high profitability, predators switch between
283 including or excluding the alternative prey from its diet since changes in mimic abundance lead
284 to different optimal p_n (Fig. 3A; see also Appendix B and Fig. S1 for analytical derivation). With
285 slightly increased mimic–model similarity (i.e., increasing k towards approximately 0.2), the prob-
286 ability of the model being attacked increased while the attack probability of the mimic decreased
287 (light blue and orange, respectively, in the lower panel of Fig. 2A). This is because predators now
288 sometimes get confused between the mimic and the model and consume the wrong prey. Under
289 such low similarity scenario ($0 < k < 0.2$), we observed that the system still exhibits cycles in its
290 diet composition. However, unlike the scenario when $k = 0$, where predators exclude the model

291 from their diet, here all three prey are included (Fig. 3B), demonstrating that even a slight similarity
292 between the mimic and model can influence the community dynamics.

293 As the mimic–model similarity continues to increase (as k approaches 0.5), predators find
294 it increasingly difficult to distinguish between the mimic and the model. Under this scenario,
295 maintaining a high attack probability towards the mimic will lead to accidental consumption of
296 the unprofitable model. To avoid this situation, optimal foraging leads predators to reduce their
297 attack probability on the mimic. This foraging decision releases the predator from the cost of mis-
298 takenly consuming the model, ultimately stabilizing the predator population at higher abundance
299 (Fig. 3C). At the same time, the mimic population increases in abundance due to the released
300 predation pressure, while the model population continues to decline due to occasional predation.
301 Surprisingly, as the similarity between the mimic and the model increases further ($0.6 < k < 0.8$),
302 the probability of attacking the mimic rises again, producing a U-shaped relationship between
303 mimic–model similarity and attack probability across this intermediate range of k . This reversal
304 occurs because, while predators could theoretically avoid accidentally consuming the model by
305 further reducing attacks on mimics, optimal foraging prevents this strategy from being realized
306 as the predator still requires foraging gain from the mimic–model species pair. Instead, predators
307 unavoidably need to increase their attack probability on both prey items to make up for the fre-
308 quent unprofitable accidental attacks, thereby decreasing the abundance of the predator. Initially,
309 this decline in predator abundance allows the mimic population to rise further, reaching its peak
310 just before similarity exceeds $k = 0.8$ (Fig. 3D). However, once similarity surpasses this threshold,
311 the rising attack probability on mimics leads to a decrease in mimic abundance. Consequently,
312 the peaks in predator and mimic abundance occur at different values of k , reflecting the shifting
313 balance between prey profitability and foraging pressure within the mimicry complex.

314 In addition to the counterintuitive increase in p_c , a higher mimic–model similarity also
315 results in the reoccurrence of cyclic dynamics ($0.88 < k < 1$; right-most region in Fig. 2A). When
316 $0.88 < k < 0.94$, population cycles are characterized by diet composition shifts (Fig. 3E) similar
317 to those seen under low mimic–model similarity. However, once similarities surpass a certain
318 threshold ($k > 0.93$), the cycles are akin to classic predator–prey population cycles and no longer
319 involve diet composition shifts. Instead, predators now view the mimic–model species pair as

320 a single species and consistently include both in their diet ($p_m = p_c = 1$; Fig. 3F). Note that
 321 despite their inability to distinguish the mimic and the model apart, predators do not discard
 322 the mimic–model species pair from their diet because its collective value remains profitable. We
 323 show in Figure S2 that making $v_m < 0$ can, heuristically, reduce the collective profitability of the
 324 mimic–model species pair, eventually causing predators to discard the species pair altogether if
 325 they share high morphological similarity (Fig. S2).

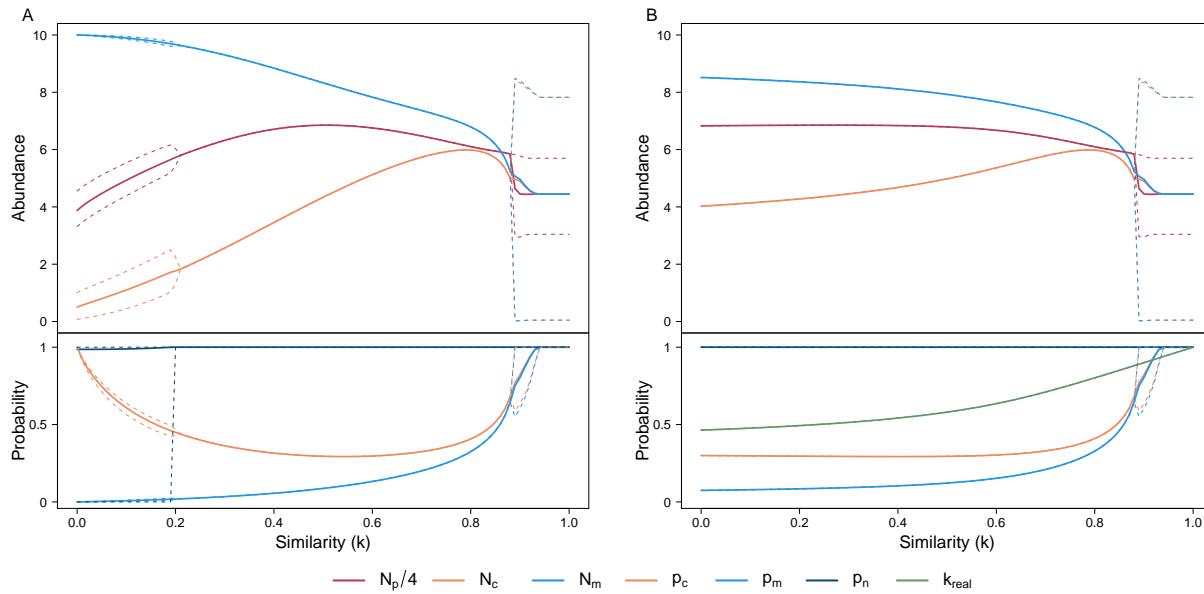


Figure 2: Bifurcation plot for the single mimic system, with predator recognition process based on (A) mimic–model morphological similarity or (B) abundance-dependent recognition. Both (A) and (B) bifurcate along the innate mimic–model morphological similarity (k). The upper panels of both plots illustrate the abundance of the predator (N_p ; red), the mimic (N_c ; orange), and the model (N_m ; light blue). Note that the abundance of the predator is divided by four for better visualization. The solid line represents the mean abundance, and the dashed line represents the maximum and minimum of the abundance. The lower panels of both plots illustrate the predator’s attack probability on the mimic (p_c ; orange), the model (p_m ; light blue), and the alternative prey (p_n ; dark blue). In panel (B), the realized recognition between the mimic and the model (k_{real} ; eq. 3) is plotted in green. The solid and dashed lines in the lower panels also represent the mean and maximum/minimum values, respectively.

326 **Predator decision depending on abundance-dependent recognition**

327 We next relaxed the assumption that the predator’s decision process is solely determined by mimic–
 328 model morphological similarity (k), making it dependent on the abundance ratio of two prey

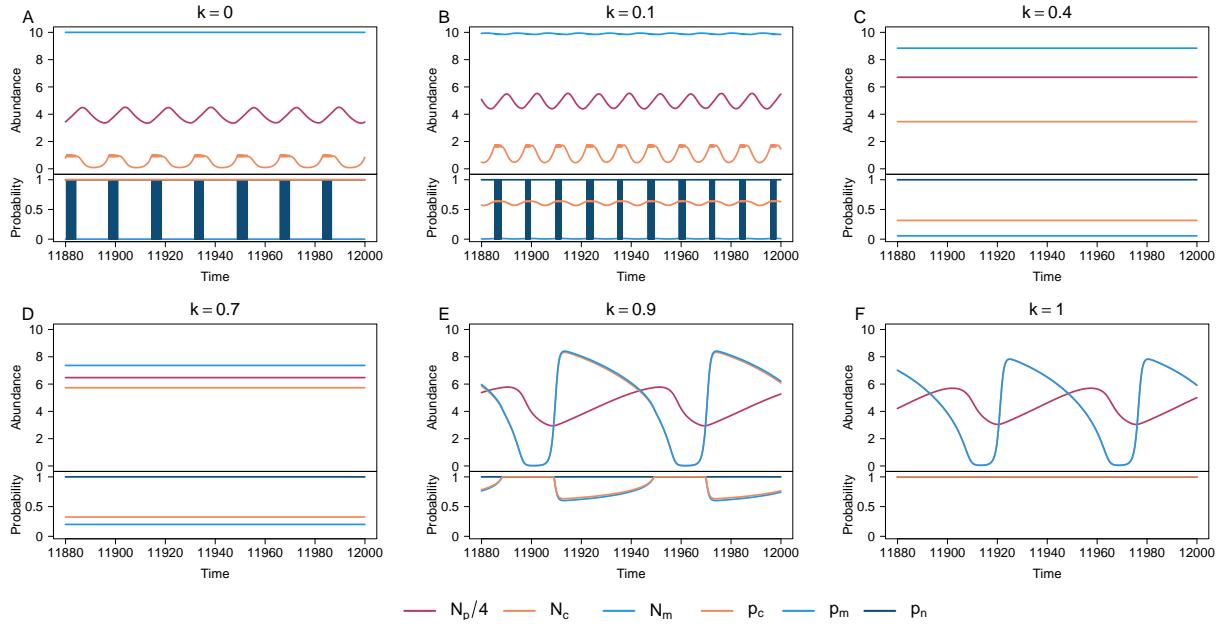


Figure 3: Time series of species abundance and predator attack probability for the single-mimic system with predator recognition based solely on mimic–model morphological similarity (k). Similarity (k) values vary as follows: (A) $k = 0$, (B) $k = 0.1$, (C) $k = 0.4$, (D) $k = 0.7$, (E) $k = 0.9$, and (F) $k = 1$. The upper half of each panel illustrates the abundance of the predator (N_p ; red), the mimic (N_c ; orange), and the model (N_m ; light blue). Note that the abundance of the predator is divided by four for better visualization. The lower half of each panel illustrates the predator’s probability of attacking the mimic (p_{c1} ; orange), the model (p_m ; light blue), and the alternative prey (p_n ; dark blue). Note in panel (F) the lines representing the mimic and the model completely overlap as they are perceived as the same species under $k = 1$.

329 categories, i.e., the profitable mimic and the unprofitable model ($\frac{N_m}{N_c}$; eq. 3). We used the notation
 330 k_{real} to represent the realized similarity between the mimic and the model from the perspective
 331 of the predator (again, secondary subscript omitted for simplicity). Unlike the previous scenario
 332 (Fig. 2A), which produced diet shift cycles under low similarity values, abundance-dependent
 333 recognition leads to stable dynamics under a wide range of innate similarity values ($0 < k < 0.88$;
 334 Fig. 2B). This suggests that when the innate mimic–model similarity is not too high, the predator
 335 recognition is influenced by the observed $\frac{N_m}{N_c}$ ratio and reaches an intermediate realized similarity
 336 (green line in Fig. 2B lower panel). The realized intermediate similarity ($0.46 < k_{real} < 0.88$)
 337 corresponds to values in Figure 2A that stabilize the system and lead to higher predator and
 338 mimic abundance. In other words, abundance-dependent recognition leads predators to reduce
 339 attack on mimics with low morphological similarity, causing the system to exhibit stable dynamics

340 associated with intermediate similarity values (i.e., $k_{real} > k$).

341 However, the predator becomes less responsive to the prey abundance ratio, and the real-
342 ized similarity becomes increasingly similar to k , as predator recognition becomes increasingly
343 constrained by the innate mimic–model similarity (i.e., high k). That is, the predator cannot adopt
344 its realized similarity to an intermediate value that would stabilize the system. Instead, the high
345 innate mimic–model morphological similarity causes the predator to perceive the two prey as a
346 single species, which causes $k_{real} \approx k$ as $\frac{N_m}{N_c} \approx 1$; the resulting dynamics is a cyclic behavior with
347 reduced population sizes (corresponding to a high k scenario in Fig. 2A).

348 **Multi-mimic system with abundance-dependent recognition**

349 We expanded our model to consider a multi-mimic mimicry system consisting of a Batesian mimic
350 (N_{c_1}), a Müllerian mimic (N_{c_2}), and a model species (N_m), with the latter two considered as
351 unprofitable prey ($v_{c_2} = v_m = 0$). We considered this community composition as it represents
352 the simplest mimicry complex with multiple types of mimicries (see also Fig. S3 for an example
353 with more species). We explored how the Batesian mimic–model morphological similarity (k_1)
354 and the Müllerian mimic–model morphological similarity (k_2) influenced community dynamics,
355 assuming the predator possesses abundance-dependent recognition (see also Fig. ?? for the case
356 where foraging decisions depend solely on mimic–model morphological similarity). Intuitively, a
357 high $k_{real, 1}$ value causes the predator to perceive the mimicry complex as a more profitable group
358 of prey, whereas a high $k_{real, 2}$ would decrease the overall profitability of the mimicry complex.
359 Briefly, the simulation reveals that while intermediate similarity in both Batesian and Müllerian
360 mimicry stabilizes the system and increases the abundance of the predator and mimics, different
361 types of mimicry vary in their impact on the species abundance (Fig. 4).

362 Our simulation suggests that the system exhibits two distinct dynamical regimes, governed
363 by the interplay between k_1 and k_2 : (1) a consistent alternative prey inclusion regime (top-left
364 of Fig. 4) and (2) an occasional alternative prey exclusion regime (bottom-right of Fig. 4). In the
365 first regime, in addition to always consuming the alternative prey (average $p_n = 1$; Fig. 4H, J),
366 it is characterized by lower p_{c_1} , p_{c_2} (top-left of Fig. 4B, D) and higher abundance of N_{c_1} , N_{c_2} ,
367 and N_p (top-left of Fig. 4A, C, E). In contrast, in the occasional alternative prey exclusion regime,

368 the alternative prey is not always included (average $p_n < 1$; Fig. 4H, J) but the Batesian and the
369 Müllerian mimics are consistently included in the diet with high attack probability, leading to their
370 lower abundance (lower-right of Fig. 4A–D). The difference in the diet composition suggests that
371 these two regimes are governed by the predator's diet strategy (see Appendix B for the analytical
372 derivation of this boundary).

373 Additionally, most scenarios in the top-left consistent alternative prey inclusion regime
374 exhibit stable population dynamics, while all scenarios in the lower-right occasional alternative
375 prey exclusion regime exhibit cyclic dynamics (Fig. 4I). The boundary separating the two regimes
376 shows a positive association between k_1 and k_2 , indicating that a higher value of k_2 allows the
377 system to tolerate a greater k_1 before becoming destabilized (Fig. 4I). When k_1 is sufficiently
378 high, the system eventually becomes unstable as the predator increasingly perceives the mimicry
379 complex as a profitable food source, akin to the instability seen in the single Batesian mimic system
380 with high similarity (Fig. 2B). However, the presence of a Müllerian mimic can mitigate this effect:
381 a Müllerian mimic with sufficiently high k_2 can stabilize the system, especially when k_1 is fixed at
382 low to intermediate values (Fig. 4I). This demonstrates that mimic types differ in their impact on
383 system stability, with a perfect Batesian mimic (high k_1) causing the system to be unstable and a
384 perfect Müllerian mimic (high k_2) promoting stability.

385 Beyond stability, we examined how the Batesian mimic–model morphological similarity
386 (k_1) affects mimic abundance, while keeping the Müllerian mimic's morphological similarity (k_2)
387 constant. Under abundance-dependent recognition, $k_{real,1}$ remains within an intermediate range
388 ($0.5 < k_{real,1} < 0.8$; Fig. 4E), and Batesian mimic abundance exhibits a hump-shape pattern
389 with increasing k_1 (orange line in Fig. 5A). Moreover, compared to the scenario where predator
390 recognition relies only on morphological similarity (Fig. ??A), the resulting intermediate $k_{real,1}$
391 leads to a higher Batesian mimic abundance. The Müllerian mimic abundance, on the other hand,
392 decreases monotonically with the increasing k_1 (green line in Fig. 5A). As k_1 further increases,
393 the dynamics eventually transition into the aforementioned occasional alternative prey exclusion
394 regime, characterized by unstable dynamics with consistently low abundance of both mimics as
395 the predator now consumes the entire mimicry complex as a single palatable prey.

396 Finally, we examined how varying the Müllerian mimic–model morphological similarity (k_2)

397 affects mimic abundance, while keeping the Batesian mimic's morphological similarity (k_1) fixed.
398 When the Batesian mimic has an innate intermediate similarity ($0.5 < k_1 < 0.8$), the system is
399 likely within the occasional alternative prey exclusion regime with low abundance of both mimics
400 (Fig. 4A, C). Under this scenario, a Müllerian mimic with high similarity provides protection to the
401 mimicry complex: higher k_2 balances out the impact from a highly similar Batesian mimic, resulting
402 in the transition into the other dynamical regime with high mimic abundances. Moreover, within
403 the consistent alternative prey inclusion regime, while $k_{real, 1}$ settles within an intermediate level
404 ($0.5 < k_{real, 1} < 0.8$) and the Batesian mimic thereby maintains higher abundance, $k_{real, 2}$ increases
405 monotonically with increasing k_2 (Fig. 4F). As a result, Müllerian mimic abundance increases
406 with k_2 (Fig. 5B), suggesting that the Müllerian mimicry provides more protection under higher
407 morphological similarity. Together, these results underscore the contrasting ecological roles of the
408 two mimic types. For the Batesian mimic, intermediate similarity to the model reduces predation
409 while avoiding the high k_1 that causes predators to consume the entire mimicry complex as a
410 single profitable prey. In contrast, Müllerian mimics benefit from high similarity as it reinforces
411 predator learning, thereby leading to a steady increase in abundance with increasing k_2 .

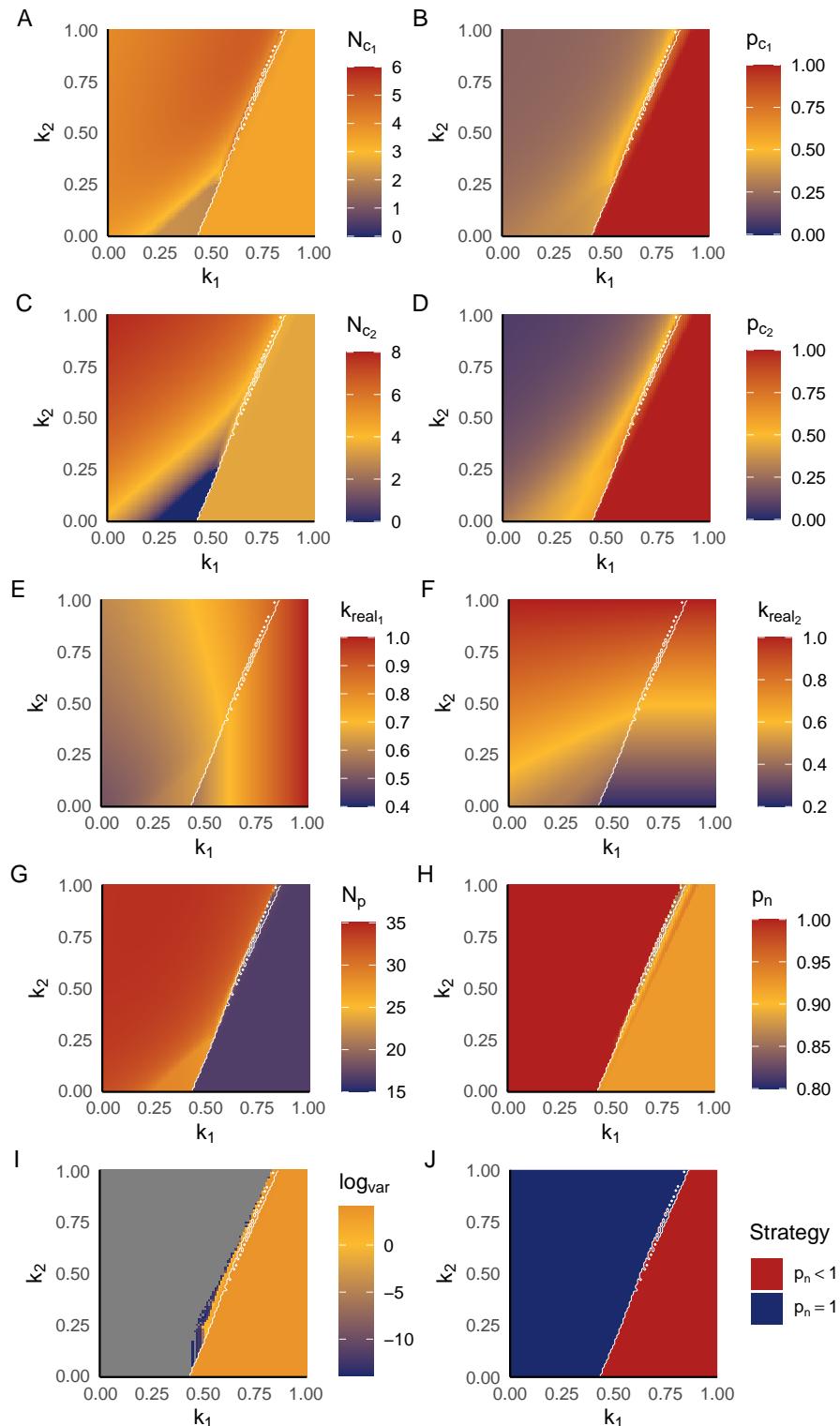


Figure 4

Figure 4: The effect of the Batesian mimic–model morphological similarity (k_1 ; x-axis) and the Müllerian mimic–model morphological similarity (k_2 ; y-axis) on system dynamics and species abundances. The different panels represent different variables: (A) Batesian mimic abundance (N_{c_1}), (B) attack probability on the Batesian mimic (p_{c_1}), (C) the Müllerian mimic abundance (N_{c_2}), (D) attack probability on the Müllerian mimic (p_{c_2}), (E) realized Batesian mimic similarity ($k_{real,1}$), (F) realized Müllerian mimic similarity ($k_{real,2}$), (G) predator abundance (N_p), (H) attack probability on the alternative prey (p_n), and (I) the log(variance) of the predator population fluctuation, serving as an indicator of community stability. Panel (J) depicts whether $p_n = 1$ (blue) or $p_n < 1$ (red), which serves as a binary indicator of the two dynamical regimes: (1) the consistent alternative prey inclusion regime (blue) and (2) the occasional alternative prey exclusion regime (red). The white outline in all panels depicts the boundary separating the two dynamical regimes in (J). Note that the abundances of different state variables are on different scales to better show the pattern of each variable.

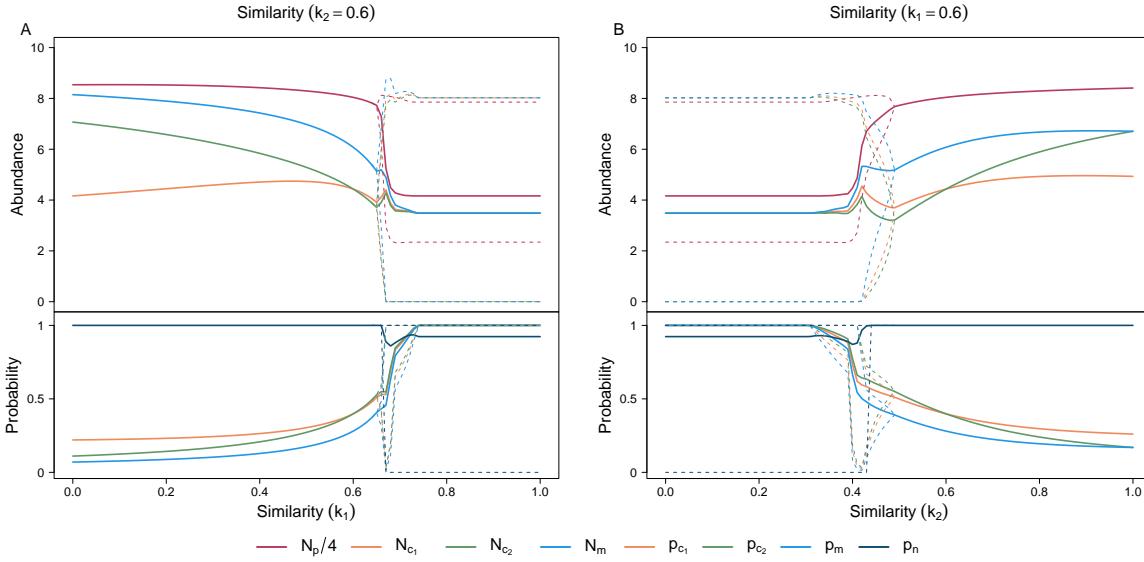


Figure 5: Bifurcation plot of the multi-mimicry system. (A) bifurcation along the Batesian mimic–model morphological similarity (k_1) while fixing the Müllerian mimic’s morphological similarity ($k_2 = 0.6$). (B) bifurcation along the k_2 while fixing $k_1 = 0.6$. The y-axis of the upper panels shows abundance, and the lower panels show the attack probability. The upper panels of both plots illustrate the abundances of the predator (N_p ; red), the Batesian mimic (N_{c_1} ; orange), the Müllerian mimic (N_{c_2} ; green), and the model (N_m ; light blue). Note that the abundance of predator is divided by four for better visualization. The lower panels of both plots illustrate the predator’s attack probability on the Batesian mimic (p_{c_1} ; orange), the Müllerian mimic (p_{c_2} ; green), the model (p_m ; light blue), and the alternative prey (p_n ; dark blue). The solid and dashed lines in all panels represent the mean and maximum/minimum values, respectively.

412 Discussion

413 We showed that imperfect mimicry (i.e., intermediate similarity between the mimic and the model)
414 promotes stable ecological dynamics and allows the mimic to reach high abundance in a single
415 Batesian mimicry system. This outcome holds whether predator recognition is shaped solely by
416 morphological similarity or by a combination of morphological similarity and prey abundance ratio
417 (Fig. 2). In a multi-mimicry system including both Batesian and Müllerian mimics, intermediate
418 similarity remains beneficial for the Batesian mimic, while high similarity for the Müllerian mimic
419 leads to increased mimic abundance (Fig. 4). These contrasting patterns suggest that the two mimic
420 types have different impacts on the system: the Batesian mimic can destabilize the system (and
421 lead to low mimic abundance) when too similar to the model, whereas the Müllerian mimic with
422 high similarity can promote system stability (and lead to high mimic abundance). Together, our
423 results suggest that imperfect mimicry can lead to ecologically stable dynamics across different
424 mimicry systems, offering new insights into how mimicry persists in nature.

425 Our results provide a mechanistic perspective on the "eye of the beholder hypothesis"
426 (Cuthill & Bennett, 1993, Dittrich *et al.*, 1993), which proposes that mimicry deemed imperfect by
427 human observers may be functionally effective from the perspective of the predator. Specifically,
428 our abundance-dependent recognition framework demonstrates that predators tend to perceive a
429 higher level of realized similarity than what is suggested by morphology alone (i.e., $k_{real,j} \geq k_j$).
430 Our formulation of abundance-dependent recognition echoes Müller's original idea that the inclu-
431 sion of more unprofitable prey strengthens the protective benefits of aposematic signals (Müller,
432 1879), and it aligns with the principles of Pavlovian conditioning, in which repeated signal expo-
433 sures reinforce learned associations. Our abundance-dependent recognition also accommodates
434 predator sensitivity to various prey categories through the parameter σ_j (Fig. S5). By incorporating
435 prey abundance into predator recognition and mimicry dynamics, our framework extends beyond
436 static morphological similarity and highlights an ecological dimension that human observers typ-
437 ically overlook. This mismatch between predator and human perception helps explain how the
438 "eye of the beholder" effect could emerge from predator decision-making behavior.

439 Our results from the single Batesian mimicry system illustrates that imperfect mimicry could

440 promote mimic abundance, leading to the prediction that mimics in simple Batesian systems should
441 generally exhibit intermediate resemblance to their model. This aligns with recent empirical find-
442 ings showing that imperfect mimicry is more evolutionarily stable than perfect mimicry (Kelly
443 *et al.*, 2025). In contrast, our results from the multi-mimicry system suggest that while Müllerian
444 mimics alone should achieve higher similarity, the interplay between different mimic types can
445 generate more complicated dynamics. Empirical studies also indirectly support this idea: Mülle-
446 rian mimicry rings could include dozens of species with varying degrees of resemblance and even
447 overlapping traits across different mimicry rings (Wilson *et al.*, 2012, 2022, Motyka *et al.*, 2020),
448 potentially due to the existence of Batesian mimics or quasi-Müllerian mimics in the mimicry com-
449 plex. Therefore, based on our theoretical results, we hypothesize that Müllerian mimics in nature
450 may exhibit a greater diversity of aposematic signals when Batesian mimics or quasi-Müllerian
451 mimics are also involved. This prediction can be tested empirically by comparing the trait diversity
452 among Müllerian mimics across different multi-mimicry complexes.

453 Our predictions regarding the benefits of imperfect mimicry can be tested by meta-analysis
454 of behavior experiments and comparative analysis of trait data. For example, a meta-analysis
455 on mimic–model morphological similarity could examine if Müllerian mimics typically exhibit a
456 higher similarity with the model, while single Batesian mimicry systems are more likely to exhibit
457 intermediate similarity with the model. One can analyze morphological traits such as color, pat-
458 tern, or other aposematic signals to characterize the similarity between mimics and models (Eliason
459 *et al.*, 2019, Maia *et al.*, 2019, Kelly *et al.*, 2021), thereby providing a basis to evaluate whether empir-
460 ical systems align with theoretical predictions. In addition, combining trait data with phylogenetic
461 information can reveal whether the aposematic signal is under selection (Eliason *et al.*, 2019). In
462 Müllerian mimicry systems, we expect strong directional selection on these traits with model and
463 mimic converging to one aposematic signal. In contrast, we expect predation-driven selection in
464 Batesian mimicry systems to stabilize traits at intermediate similarity. These predictions can be
465 tested through behavior experiments, such as assessing predator attack probabilities on an array
466 of mimics with various degrees of similarity (Tseng *et al.*, 2014); our predictions will be supported
467 if the mimic with intermediate similarity suffers the least attack.

468 Finally, we encourage future work to explicitly integrate aposematic traits into the theoretical

469 framework of mimicry dynamics (Holen & Johnstone, 2004, Tomizuka & Tachiki, 2024). One
470 promising approach is to replace the similarity parameter in our model with species trait distance
471 in a multi-dimensional trait space. This trait-explicit framework would provide a more mechanistic
472 interpretation of the mimic–model similarity parameter and avoid potential artifacts arising from
473 the phenomenological linkage between attack probabilities in signal detection theory. For instance,
474 in our current framework, the attack probabilities of the two mimics are indirectly constrained
475 by their linkage to the model’s attack probability (see Appendix C), which can create abrupt
476 abundance drops at low similarity values that do not reflect biologically optimal predator behavior
477 (Fig. 4C). Furthermore, a trait-explicit framework allows the investigation of eco-evolutionary
478 feedback dynamics (Tomizuka & Tachiki, 2024), where mimic trait distributions evolve under
479 selection imposed by predators. Such a framework could further help determine not only the
480 ecological stability but also the evolutionary persistence of imperfect mimicry. Overall, our study
481 underscores the significance of considering predator recognition and population dynamics into
482 mimicry theory, offering new insights into how imperfect mimicry can be maintained in natural,
483 complex mimicry systems.

484 References

485 Akcali, C.K., Kikuchi, D.W. & Pfennig, D.W. (2018) Coevolutionary arms races in Batesian mimicry?
486 A test of the chase-away hypothesis. *Biological Journal of the Linnean Society* **124**, 668–676.

487 Bates, H.W. (1862) Contributions to an insect fauna of the amazon valley. lepidoptera: Heliconidae.
488 *Transactions of the Linnean Society of London* **23**, 495–566.

489 Bosque, R.J., Lawrence, J.P., Buchholz, R., Colli, G.R., Heppard, J. & Noonan, B. (2018) Diversity of
490 warning signal and social interaction influences the evolution of imperfect mimicry. *Ecology and
491 Evolution* **8**, 7490–7499.

492 Brower, L.P. & Moffitt, C.M. (1974) Palatability dynamics of cardenolides in the monarch butterfly.
493 *Nature* **249**, 280–283.

494 Charnov, E. (1973) *Optimal Foraging: Some Theoretical Explorations*. University of Washington.

495 Charnov, E.L. (1976) Optimal foraging: attack strategy of a mantid. *The American Naturalist* **110**,
496 141–151.

497 Chittka, L. & Osorio, D. (2007) Cognitive dimensions of predator responses to imperfect mimicry.
498 *PLOS Biology* **5**, 1–5.

499 Cuthill, I.C. & Bennett, A.T.D. (1993) Mimicry and the eye of the beholder. *Proceedings of the Royal
500 Society B: Biological Sciences* **253**, 203–204.

501 Darst, C.R. (2006) Predator learning, experimental psychology and novel predictions for mimicry
502 dynamics. *Animal Behaviour* **71**, 743–748.

503 Dittrich, W., Gilbert, F., Green, P., McGregor, P. & Grewcock, D. (1993) Imperfect mimicry: A
504 pigeon's perspective. *Proceedings of the Royal Society B: Biological Sciences* **251**, 195–200.

505 Edmunds, M. (2000) Why are there good and poor mimics? *Biological Journal of the Linnean Society*
506 **70**, 459–466.

507 Eliason, C.M., Andersen, M.J. & Hackett, S.J. (2019) Using Historical Biogeography Models to
508 Study Color Pattern Evolution. *Systematic Biology* **68**, 755–766.

509 Frank, D.W., Ruxton, G.D. & Sherratt, T.N. (2009) Warning signals evolve to disengage batesian
510 mimics. *Evolution* **63**, 256–267.

511 Getty, T. (1985) Discriminability and the sigmoid functional response: how optimal foragers could
512 stabilize model-mimic complexes. *The American Naturalist* **125**, 239–256.

513 Holen, O. & Johnstone, R. (2004) The evolution of mimicry under constraints. *The American Natu-
514 ralist* **164**, 598–613.

515 Huheey, J.E. (1964) Studies of warning coloration and mimicry. iv. a. mathematical model of
516 model-mimic frequencies. *Ecology* **45**, 185–188.

517 Johnstone, R.A. (2002) The evolution of inaccurate mimics. *Nature* **418**, 524–526.

518 Karline Soetaert, Thomas Petzoldt & R. Woodrow Setzer (2010) Solving differential equations in R:
519 Package deSolve. *Journal of Statistical Software* **33**, 1–25.

520 Kelly, M.B., McLean, D.J., Wild, Z.K. & Herberstein, M.E. (2021) Measuring mimicry: methods for
521 quantifying visual similarity. *Animal Behaviour* **178**, 115–126.

522 Kelly, M.B.J., Derkarabetian, S., McLean, D.J., Shofner, R., Grismado, C.J., Haddad, C.R., Cassis,
523 G., Giribet, G., Herberstein, M.E. & Wolff, J.O. (2025) Batesian mimicry converges towards
524 inaccuracy in myrmecomimetic spiders. *Systematic Biology* p. syaf037.

525 Kikuchi, D.W., Barfield, M., Herberstein, M.E., Mappes, J. & Holt, R.D. (2022) The effect of predator
526 population dynamics on batesian mimicry complexes. *The American Naturalist* **199**, 406–419.

527 Kikuchi, D.W., Pfennig, D.W. & Dykhuizen, H.E.D. (2013) Imperfect mimicry and the limits of
528 natural selection. *The Quarterly Review of Biology* **88**, 297–315.

529 Kumazawa, F., Asami, T., Hayashi, T. & Yoshimura, J. (2006) Population dynamics of batesian
530 mimicry under interspecific competition. *Evolutionary Ecology Research* **8**, 591–604.

531 Maia, R., Gruson, H., Endler, J.A. & White, T.E. (2019) pavo 2: New tools for the spectral and spatial
532 analysis of colour in r. *Methods in Ecology and Evolution* **10**, 1097–1107.

533 Mallet, J. & Joron, M. (1999) Evolution of diversity in warning color and mimicry: Polymorphisms,
534 shifting balance, and speciation. *Annual Review of Ecology and Systematics* **30**, 201–233.

535 McGuire, L., Van Gossum, H., Beirinckx, K. & Sherratt, T.N. (2006) An empirical test of signal
536 detection theory as it applies to batesian mimicry. *Behavioural Processes* **73**, 299–307.

537 McLean, D.J., Cassis, G., Kikuchi, D.W., Giribet, G. & Herberstein, M.E. (2019) Insincere flattery?
538 understanding the evolution of imperfect deceptive mimicry. *The Quarterly Review of Biology* **94**,
539 395–415.

540 Motyka, M., Bocek, M., Kusy, D. & Bocak, L. (2020) Interactions in multi-pattern müllerian com-
541 munities support origins of new patterns, false structures, imperfect resemblance and mimetic
542 sexual dimorphism. *Scientific Reports* **10**, 11193.

543 Müller, F. (1879) Ituna and thyridia; a remarkable case of mimicry in butterflies. *Transactions of the*
544 *Entomological Society of London* **XX-XXIX**.

545 Nelson, D., Crossland, M. & Shine, R. (2010) Foraging responses of predators to novel toxic prey:
546 Effects of predator learning and relative prey abundance. *Oikos* **120**, 152–158.

547 Nur, U. (1970) Evolutionary rates of models and mimics in batesian mimicry. *The American Naturalist*
548 **104**, 477–486.

549 Oaten, A., Pearce, C. & Smyth, M. (1975) Batesian mimicry and signal detection theory. *Bulletin of*
550 *Mathematical Biology* **37**, 367–387.

551 Pekár, S., Jarab, M., Fromhage, L. & Herberstein, M.E. (2011) Is the evolution of inaccurate mimicry
552 a result of selection by a suite of predators? a case study using myrmecomorphic spiders. *The*
553 *American Naturalist* **178**, 124–134, pMID: 21670583.

554 Penney, H.D., Hassall, C., Skevington, J.H., Abbott, K.R. & Sherratt, T.N. (2012) A comparative
555 analysis of the evolution of imperfect mimicry. *Nature* **483**, 461–464.

556 Pfennig, D.W. & Kikuchi, D.W. (2012) Competition and the evolution of imperfect mimicry. *Current*
557 *Zoology* **58**, 608–619.

558 Pfennig, D.W. & Mullen, S.P. (2010) Mimics without models: causes and consequences of allopatry
559 in batesian mimicry complexes. *Proceedings of the Royal Society B: Biological Sciences* **277**, 2577–2585.

560 Quicke, D.L. (2017) *Mimicry, crypsis, masquerade and other adaptive resemblances*. John Wiley & Sons.

561 R Core Team (2024) *R: A Language and Environment for Statistical Computing*. R Foundation for
562 Statistical Computing, Vienna, Austria.

563 Rowell-Rahier, M., Pasteels, J., Alonso-Media, A. & Brower, L. (1995) Relative unpalatability of
564 leaf beetles with either biosynthesized or sequestered chemical defence. *Animal Behaviour* **49**,
565 709–714.

566 Ruxton, G.D., Allen, W.L., Sherratt, T.N. & Speed, M.P. (2018) *Avoiding Attack: The Evolutionary*
567 *Ecology of Crypsis, Aposematism, and Mimicry*. Oxford University Press.

568 Ruxton, G.D., Sherratt, T.N. & Speed, M.P. (2004) *Avoiding Attack: The Evolutionary Ecology of Crypsis,*
569 *Warning Signals and Mimicry*. Oxford University Press.

570 Schultze, W. (1923) A monograph of the pachyrrhynchid group of the brachyderinae, curculionidae:
571 Part iii. the genera apocyrtidius heller and metapocyrtus heller. *The Philippine Journal of Science*
572 **6**, 609–673.

573 Sherratt, T.N. (2002) The evolution of imperfect mimicry. *Behavioral Ecology* **13**, 821–826.

574 Sherratt, T.N. & Peet-Paré, C.A. (2017) The perfection of mimicry: an information approach.
575 *Philosophical Transactions of the Royal Society B: Biological Sciences* **372**, 20160340.

576 Stephens, D.W. & Krebs, J.R. (1986) *Foraging Theory*, vol. 1. Princeton University Press.

577 Tomizuka, H. & Tachiki, Y. (2024) The eco-evolutionary dynamics of batesian mimicry. *Journal of*
578 *Theoretical Biology* **577**, 111683.

579 Tseng, H.Y., Lin, C.P., Hsu, J.Y., Pike, D.A. & Huang, W.S. (2014) The functional significance of
580 aposematic signals: Geographic variation in the responses of widespread lizard predators to
581 colourful invertebrate prey. *PLOS ONE* **9**, 1–7.

582 Vane-wright, R.I. (1980) On the definition of mimicry. *Biological Journal of the Linnean Society* **13**,
583 1–6.

584 Wilson, J.S., Pan, A.D., Alvarez, S.I. & Carril, O.M. (2022) Assessing müllerian mimicry in north
585 american bumble bees using human perception. *Scientific Reports* **12**, 17604.

586 Wilson, J.S., Williams, K.A., Forister, M.L., von Dohlen, C.D. & Pitts, J.P. (2012) Repeated evolution
587 in overlapping mimicry rings among north american velvet ants. *Nature Communications* **3**, 1272.

588 Yamauchi, A. (1993) A population dynamic model of batesian mimicry. *Researches on Population
589 Ecology* **35**, 295–315.

Supplementary information for
Predator decision-making shapes the dynamics and stability
of mimicry systems

Yi Sun^{1,2} and Po-Ju Ke^{1,†}

¹Institute of Ecology and Evolutionary Biology, National Taiwan University, Taiwan

²Institute of organismic and molecular evolution, University of Mainz, Germany

¹

† Correspondence author: Po-Ju Ke; +886 02-3366-2467. Email: pojuke@ntu.edu.tw

2 Appendix A Equations for the single and the two-mimic system

3 The single-mimic system contains a Batesian mimic (N_c), model (N_m), predator (N_p), and the
 4 alternative prey (N_n). The explicit equations for the single-mimic system are as follows (note that
 5 the secondary subscript j in N_{c_j} and associated parameters are omitted for simplicity):

$$\frac{dN_p}{dt} = N_p \left[\frac{s(N_c p_c v_c + N_m p_m v_m + N_n p_n v_n)}{1 + s(N_c p_c h_c + N_m p_m h_m + N_n p_n h_n)} - \mu_p \right] \quad (\text{S1-1})$$

$$\frac{dN_c}{dt} = r_c N_c \left(1 - \frac{N_c}{K_c} \right) - N_p \left[\frac{s N_c p_c}{1 + s(N_c p_c h_c + N_m p_m h_m + N_n p_n h_n)} \right] \quad (\text{S1-2})$$

$$\frac{dN_m}{dt} = r_m N_m \left(1 - \frac{N_m}{K_m} \right) - N_p \left[\frac{s N_m p_m}{1 + s(N_c p_c h_c + N_m p_m h_m + N_n p_n h_n)} \right] \quad (\text{S1-3})$$

$$\frac{dN_n}{dt} = D(S_n - N_n) - N_p \left[\frac{s N_n p_n}{1 + s(N_c p_c h_c + N_m p_m h_m + N_n p_n h_n)} \right]. \quad (\text{S1-4})$$

6 The two-mimic system contains two types of mimics (secondary subscript j reintroduced to
 7 distinguish them), with N_{c_1} as the Batesian mimic and N_{c_2} as the Müllerian mimic. The explicit
 8 equations for the two-mimic system are as follows:

$$\frac{dN_p}{dt} = N_p \left[\frac{s(N_{c_1} p_{c_1} v_{c_1} + N_{c_2} p_{c_2} v_{c_2} + N_m p_m v_m + N_n p_n v_n)}{1 + s(N_{c_1} p_{c_1} h_{c_1} + N_{c_2} p_{c_2} h_{c_2} + N_m p_m h_m + N_n p_n h_n)} - \mu_p \right] \quad (\text{S2-1})$$

$$\frac{dN_{c_1}}{dt} = r_{c_1} N_{c_1} \left(1 - \frac{N_{c_1}}{K_{c_1}} \right) - N_p \left[\frac{s N_{c_1} p_{c_1}}{1 + s(N_{c_1} p_{c_1} h_{c_1} + N_{c_2} p_{c_2} h_{c_2} + N_m p_m h_m + N_n p_n h_n)} \right] \quad (\text{S2-2})$$

$$\frac{dN_{c_2}}{dt} = r_{c_2} N_{c_2} \left(1 - \frac{N_{c_2}}{K_{c_2}} \right) - N_p \left[\frac{s N_{c_2} p_{c_2}}{1 + s(N_{c_1} p_{c_1} h_{c_1} + N_{c_2} p_{c_2} h_{c_2} + N_m p_m h_m + N_n p_n h_n)} \right] \quad (\text{S2-3})$$

$$\frac{dN_m}{dt} = r_m N_m \left(1 - \frac{N_m}{K_m} \right) - N_p \left[\frac{s N_m p_m}{1 + s(N_{c_1} p_{c_1} h_{c_1} + N_{c_2} p_{c_2} h_{c_2} + N_m p_m h_m + N_n p_n h_n)} \right] \quad (\text{S2-4})$$

$$\frac{dN_n}{dt} = D(S_n - N_n) - N_p \left[\frac{s N_n p_n}{1 + s(N_{c_1} p_{c_1} h_{c_1} + N_{c_2} p_{c_2} h_{c_2} + N_m p_m h_m + N_n p_n h_n)} \right]. \quad (\text{S2-5})$$

10 Appendix B Analytical criteria for diet shifting

11 Optimal foraging theory is a key component of our theoretical framework, producing cycling
 12 behavior in both single Batesian mimicry and multi-mimic systems. Here we present the analytical
 13 criteria and simulation results for this cycling behavior in different systems.

14 Diet shift criterion for single Batesian mimic system

15 In the single Batesian mimicry framework, we illustrated two mechanisms that produce cycles:
 16 diet shift and predator-prey interaction. In Fig. 2A, we show that a diet shift cycle could happen
 17 when $k < 0.2$ and $0.88 < k < 0.94$. Here, for the single Batesian mimicry system, we derive the
 18 analytical criterion for predators to include the alternative prey in their diet when the mimicry
 19 complex is determined to be the more profitable food. The energy gained by predators under
 20 different diet compositions is as follows:

$$G_n = \frac{v_n N_n}{1 + h_n N_n} \quad (S3)$$

$$G_{mc} = \frac{v_m p_m N_m + v_c p_c N_c}{1 + h_m p_m N_m + h_c p_c N_c} \quad (S4)$$

$$G_{mcn} = \frac{v_n N_n + v_m p_m N_m + v_c p_c N_c}{1 + h_n N_n + h_m p_m N_m + h_c p_c N_c}. \quad (S5)$$

21 Here, G_n , G_{mc} , and G_{mcn} represent the energy gain when the predator diet consists of only the
 22 alternative prey, only the mimicry complex, and all three prey items, respectively. For predators to
 23 include alternative prey into the diet when it currently only consumes the mimicry complex, the
 24 gain from including all three species has to be greater than that when only including mimics and
 25 models, i.e., $G_{mcn} > G_{mc}$. By rearranging the terms, we arrive at the following criterion:

$$\frac{v_m p_m N_m + v_c p_c N_c}{1 + h_m p_m N_m + h_c p_c N_c} < \frac{v_n}{h_n}. \quad (S6)$$

26 This result shows that switching from G_{mc} to G_{mcn} requires the profitability of the alternative
 27 prey to be greater than the energy gain obtained from only consuming the mimicry species pair.
 28 In Figure S1, we show a time series illustrating the diet shift from G_{mcn} to G_{mc} (i.e., p_n switches

29 between 1 to 0, respectively) when $k = 0.1$ (see also Fig. 2A). Notably, we depict our analytical
 30 derivation with gray strips in Figure S1, showing that the analytic criterion matches the time points
 31 of diet switching in the simulation result.

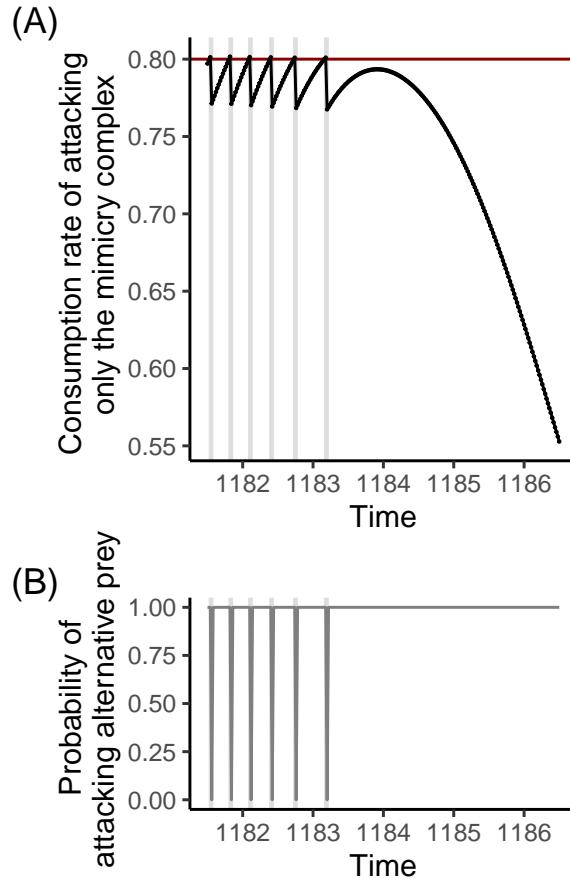


Figure S1: Time series plots showing the (A) diet switching criterion and (B) probability of consuming the alternative prey (p_n) in a single Batesian mimicry system with $k = 0.1$. Here, we show the diet switching behavior from only consuming the mimicry species pair (G_{mc}) to including the alternative prey (G_{mcn}). The x-axis shows time step 1181 to 1187 (with integration step size 0.02). The black line in panel A is the consumption rate of attacking only the mimicry complex and the red line shows the profitability of the alternative prey (constant $\frac{v_n}{h_n}$). The blue line in panel B is the probability of attacking the alternative prey (p_n). Grey strips indicate the time period when the switching criterion is met, thereby inducing a diet switch. The parameter values are identical to those in the main text, see section Numerical simulations for details.

32 Besides showing the criterion for a predator to switch from only consuming the mimicry
 33 complex to consuming all three prey species (i.e., the inclusion of the alternative prey), we also

34 provide the criterion for when a predator will switch its diet from consuming only alternative prey
 35 to consuming all three prey species (i.e., the inclusion of the mimicry pair). The criterion for the
 36 predator to switch diet is $G_{mcn} > G_n$, which corresponds to:

$$N_n < \frac{v_m p_m N_m + v_c p_c N_c}{(h_m v_n - h_n v_m) p_m N_m + (h_c v_n - h_n v_c) p_c N_c} \quad (S7)$$

37 **Regime shift criterion for multi-mimic system**

38 For the multi-mimic system, Figure 4 shows that there is a boundary separating two dynamical
 39 regimes. The two regimes are characterized by whether the alternative prey is always included in
 40 the predator's diet or not (Fig. 4J). In the consistent alternative prey inclusion regime (top-left of
 41 Fig. 4), the energy gain can is as follows:

$$G_{mc_1 c_2 n} = \frac{v_n N_n + v_m p_m N_m + v_{c_1} p_{c_1} N_{c_1} + v_{c_2} p_{c_2} N_{c_2}}{1 + h_n N_n + h_m p_m N_m + h_{c_1} p_{c_1} N_{c_1} + h_{c_2} p_{c_2} N_{c_2}}. \quad (S8)$$

42 We could also write out the energy gain term in the occasional alternative prey exclusion regime
 43 (bottom-right of Fig. 4), where the predator always incorporates the mimicry complex but does
 44 not always incorporate the alternative prey:

$$G_{mc_1 c_2 n_\phi} = \phi \left[\frac{v_n N_n + v_m N_m + v_{c_1} N_{c_1} + v_{c_2} N_{c_2}}{1 + h_n N_n + h_m N_m + h_{c_1} N_{c_1} + h_{c_2} N_{c_2}} \right] + (1 - \phi) \left[\frac{v_m N_m + v_{c_1} N_{c_1} + v_{c_2} N_{c_2}}{1 + h_m N_m + h_{c_1} N_{c_1} + h_{c_2} N_{c_2}} \right]. \quad (S9)$$

45 Here, ϕ is the proportion of time that the alternative prey is included in the diet, which can be
 46 obtained by the long-term average of p_n since it is a binary variable. When $G_{mc_1 c_2 n} > G_{mc_1 c_2 n_\phi}$, the
 47 system enters the consistent alternative prey inclusion regime with stable dynamics. Conversely,
 48 when $G_{mc_1 c_2 n} < G_{mc_1 c_2 n_\phi}$, the system enters the occasional alternative prey exclusion regime with
 49 unstable dynamics. Note that the white outline in Fig. 4 was drawn based on the above criterion,
 50 with ϕ equal to the average p_n obtained from the simulation.

51 Appendix C Caution against multi-species signal detection theory

52 In the multi-mimicry system, we incorporated signal detection theory for the two mimic species
53 independently as:

$$p_{c1} = p_m^{k_1} \quad (S10)$$

$$p_{c2} = p_m^{k_2}. \quad (S11)$$

54 This expression could be rewritten as:

$$p_{c1} = p_{c2}^{\frac{k_1}{k_2}}. \quad (S12)$$

55 Under this expression, numeric artifacts may occur when both k_1 and k_2 are low as the attack
56 probabilities of the two mimics are indirectly constrained. Consider the case where $k_1 = 0$
57 and $k_2 = 0$, which represents the scenario in which the predator could perfectly distinguish
58 between the Batesian mimic, the Müllerian mimic, and the model. When the predator is capable
59 of distinguishing between all prey items, one would intuitively expect that predators should only
60 attack the Batesian mimic; indeed, the optimal foraging theory results in $p_{c1} = 1$. However, with
61 p_m becoming 0 given $k_1 = 0$, the fact that $k_2 = 0$ numerically guarantees that $p_{c2} = 1$ (lower-
62 left region of Figs 4C and ??C). This conflict between biological intuition and numeric results
63 comes from the direct multi-species extension of the signal detection theory, and can be seen
64 in the lower left of Figs 4 and ???. We note that abundance-dependent recognition can partially
65 resolve this numerical artifact, since the realized similarity $k_{real,j}$ will deviate from the low innate
66 morphological similarity and achieve an intermediate value. To further resolve this artifact, a
67 trait-based approach could be a promising alternative approach to model multi-mimicry systems,
68 as mentioned in the Discussion.

69 **Supplementary Figures**

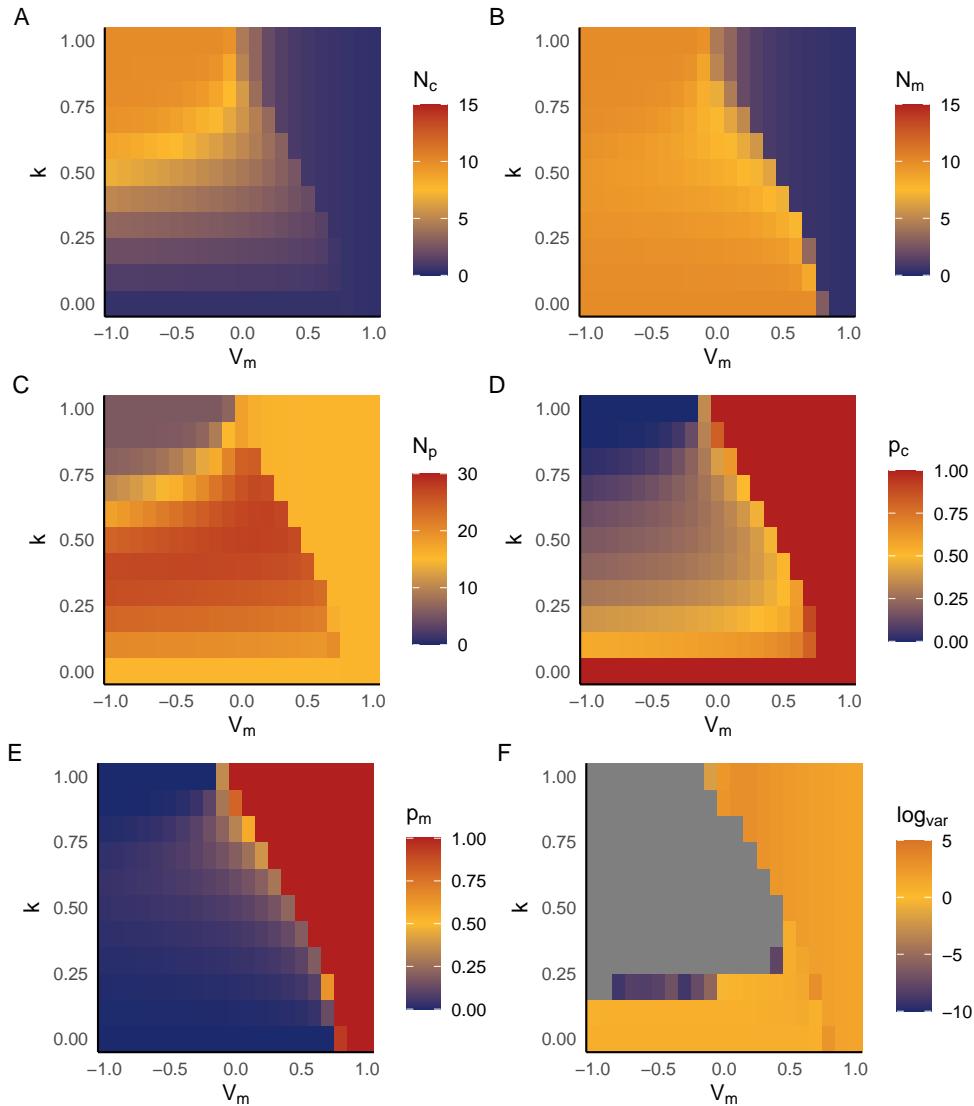


Figure S2: The effect of the model species value (v_m ; x-axis) and the mimic–model similarity (k ; y-axis) on the single Bayesian mimicry system without abundance-dependent similarity. A lower model value indicates a lower profitability of consuming the model, which also influences the collective profitability of the mimic–model species pair; note the default value in the main text is $v_m = 0$. Different panels represent different variables: (A) mimic abundance (N_c), (B) model abundance (N_m), (C) predator abundance (N_p), (D) the attacked probability on the mimic (p_c), (E) the attacked probability on the model (p_m), and (F) the log(variance) of the predator abundance fluctuation, serving as an indicator of whether the system is cycling or not. See section Numerical simulations for parameter details.

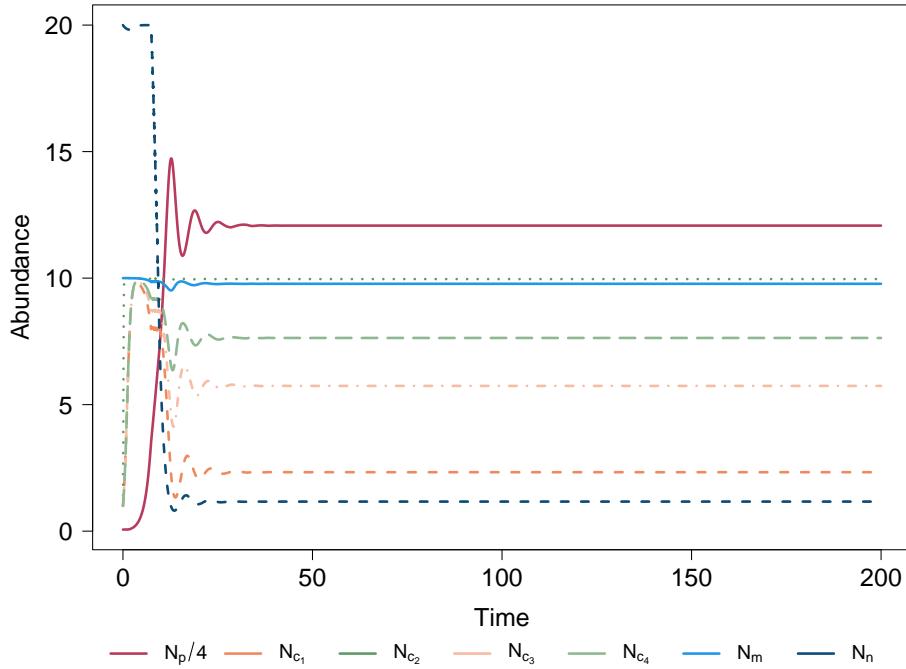


Figure S3: Time series of species abundances in a four-mimicry system where predator recognition is based solely on mimic–model morphological similarity (k_{c_j}). The system includes: two Batesian mimics (N_{c_1} and N_{c_3} ; orange and light orange, respectively) and two Müllerian mimics (N_{c_2} and N_{c_4} ; green and light green, respectively), the model (N_m ; light blue), the predator (N_p ; red), and the alternative prey (N_n ; dark blue). Note that the abundance of predators is divided by four for better visualization. Similarity (k_{c_j}) values as follows: $k_{c_1} = 0.4$, $k_{c_2} = 0.9$, $k_{c_3} = 0.5$, and $k_{c_4} = 0.6$. Other parameter follow the main text, with additional parameters for N_{c_3} and N_{c_4} including: $v_{c_3} = 2.5$, $v_{c_4} = 0$, $h_{c_3} = h_{c_4} = 1$, $r_{c_3} = r_{c_4} = 2$, and $K_{c_3} = K_{c_4} = 10$.

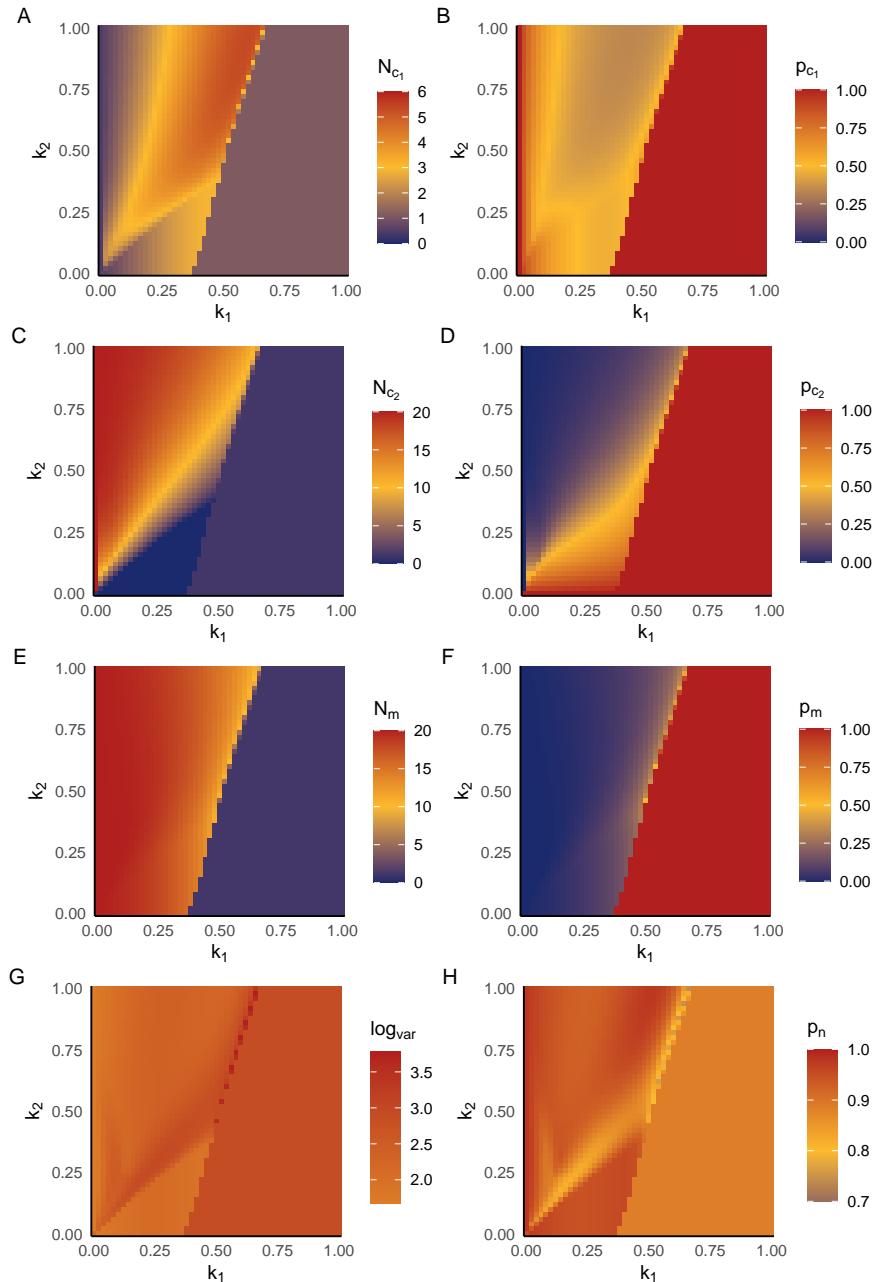


Figure S4: The effect of the Batesian mimic–model similarity (k_1 ; x-axis) and the Müllerian mimic–model similarity (k_2 ; y-axis) on the multi-mimicry system when recognition depends solely on morphological similarity (i.e., without abundance-dependent recognition). The different panels represent different variables: (A) Batesian mimic abundance (N_{c_1}), (B) attack probability on the Batesian mimic (p_{c_1}), (C) the Müllerian mimic abundance (N_{c_2}), (D) attack probability on the Müllerian mimic (p_{c_2}), (E) model abundance (N_m), (F) attack probability on the mimic (p_m), (G) the log(variance) of the predator fluctuations, serving as an indicator of community stability, and (H) the attack probability on the alternative prey (p_n). Note that the abundances of different state variables are on different scales to better show the pattern of each variable. See main text for other parameter values.

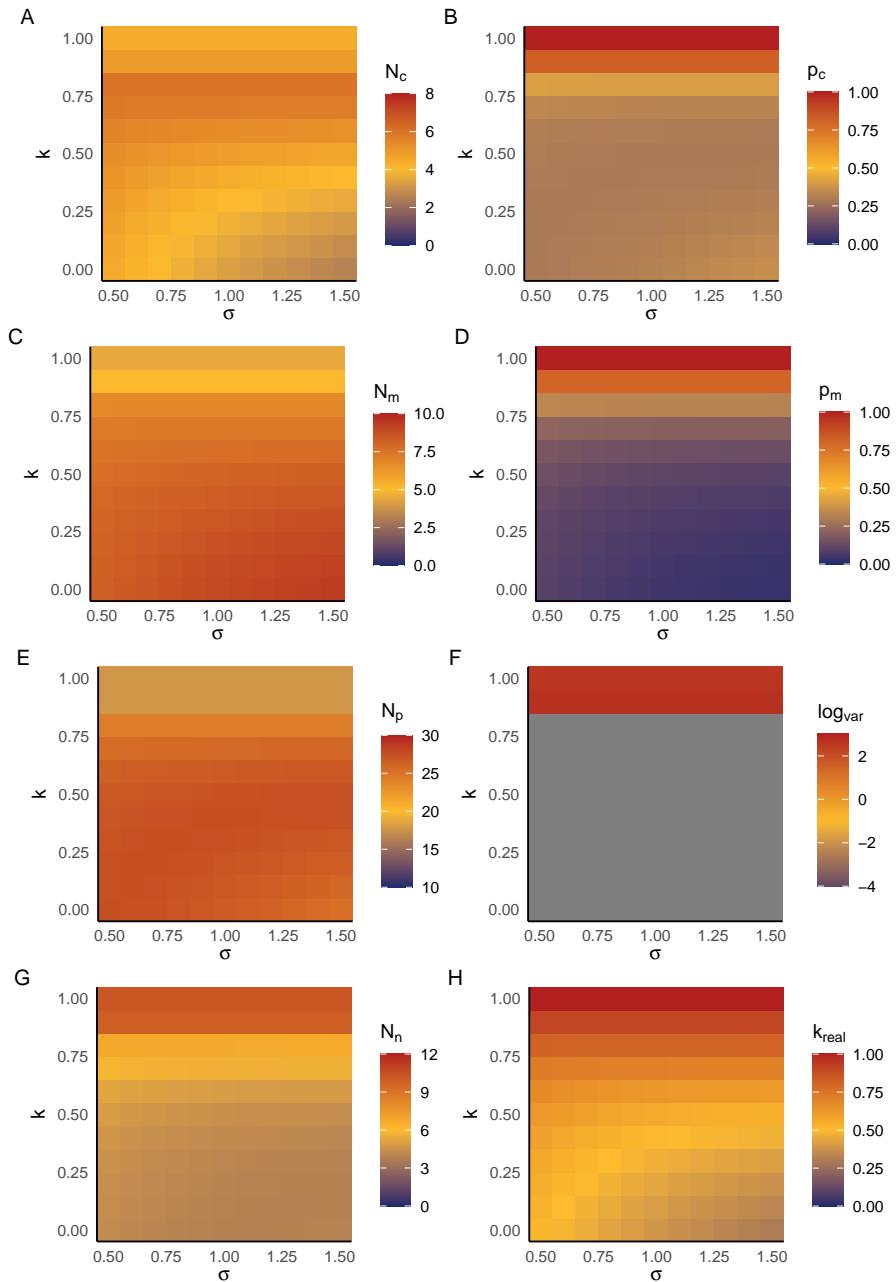


Figure S5: The effect of predator sensitivity to prey categories (σ ; x-axis) and the mimic-model morphological similarity (κ ; y-axis) on the single Batesian mimicry system with abundance-dependent similarity. The different panels represent different variables: (A) Batesian mimic abundance (N_c), (B) attack probability on the Batesian mimic (p_c), (C) the model abundance (N_m), (D) attack probability on the model (p_m), (E) predator abundance (N_p), (F) the log(variance) of the predator abundance fluctuation as an indicator of system stability, (G) alternative prey abundance (N_n), and (H) the realized similarity due to abundance-dependent recognition (p_n). Note that the abundances of different state variables are on different scales to better show the pattern of each variable. See main text for other parameter values.