Memories of trees past: coexistence implications of legacy conspecific density dependence

Lukas Magee¹, Daniel Smith², David Bauman³, Po-Ju Ke⁴, Helene Muller-Landau⁵, Kristina Anderson-Teixeira⁶, Jessica Shue⁷, David Orwig⁸, Sean McMahon⁹, Stephanie Bohlman¹, Raelene Crandall¹, Ben Weinstein¹, Sergio Marconi¹, Jeremy Lichstein¹, James Gillooly¹, Robert Bagchi¹⁰, Joseph LaManna¹¹, and Daniel Johnson¹

March 14, 2025

Abstract

The Janzen-Connell Hypothesis posits that plant species diversity is maintained by a reduction in seedling survival near living conspecific trees relative to heterospecifics –known as negative conspecific density dependence (CDD). CDD facilitates coexistence if stronger than heterospecific density dependence (HDD). However, whether and how long CDD persists after trees die is unknown. In a three-year study across three forests, we monitored seedling survival near living and dead trees, both conspecific and heterospecific, across a seven-year chrono-sequence since tree death. CDD persisted for at least five years after tree death ('legacy CDD'), and most species showed increasingly stronger CDD relative to HDD through time. We used our empirical findings to parametrize a theoretical community dynamics model. Our model suggests that both stabilizing niche differences and fitness differences persist after tree death. While legacy CDD can facilitate coexistence, fitness differences often overwhelmed niche differences, making competitive exclusion the most likely outcome.

Hosted file

Legacy CNDD evidence and theory_updated_submission.docx available at https://authorea.com/users/902301/articles/1277330-memories-of-trees-past-coexistence-implications-of-legacy-conspecific-density-dependence

¹University of Florida

²The University of Texas at Austin

 $^{^{3}}AMAP$

⁴National Taiwan University

⁵Smithsonian Tropical Research Institute

⁶Smithsonian Conservation Biology Institute

⁷Smithsonian Environmental Research Center

⁸Harvard University

⁹Smithsonian Institution

¹⁰University of Connecticut

¹¹Marquette University