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Abstract1

Soil microorganisms can have profound impacts on plant community dynamics and have received2

increasing attention in the context of plant–soil feedback. The effects of soil microbes on plant3

community dynamics are classically evaluated with a two-phase experimental design that consists4

of a conditioning phase, during which plants modify the soil microbial community, and a response5

phase, during which the biomass performance of plants is measured as their response to the soil6

modification. Predicting plant community-level outcomes based on these greenhouse experimen-7

tal results implicitly assumes that plant–soil microbe interactions remain constant through time.8

However, a growing body of research points to a complex temporal trajectory of plant–soil microbe9

interactions, with microbial effects varying with the conditioning duration, plant development,10

and time since conditioning. Most previous studies also implicitly assume that measuring plant11

biomass performance alone adequately captures the most critical impacts soil microbes have on12

plant population dynamics, neglecting that soil microbes also govern other key demographic13

processes over the plant life cycle. Here, we discuss the relevance of these temporal and demo-14

graphic dimensions of plant–soil microbe interactions when extrapolating experimental results15

and propose modeling frameworks that can incorporate the new empirical evidence. By integrat-16

ing empirical and theoretical approaches, we provide a roadmap for more nuanced predictions of17

the long-term consequences of plant–soil microbe interactions in nature.18

Keywords19

conspecific negative density dependence, demographic models, Janzen–Connell hypothesis, mi-20

crobial community, patch occupancy model, plant–soil feedback21
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I. Introduction22

Plants interact with a diverse array of soil microbes, including mutualists, decomposers, and23

pathogens. These interactions can be bidirectional, with plants altering the composition of the soil24

microbial community, and the resulting changes in microbial community impacting subsequent25

plant performance in the conditioned soil (Bever, 1994, Bever et al., 1997, Bever, 2003). The study26

of plant–soil microbe interactions has its origin in agricultural science (Huang et al., 2013, van der27

Putten et al., 2013) and has been integrated into community ecology under the framework of28

plant–soil feedback (PSF). Since its introduction by Bever et al. (1997), studies have extensively29

discussed how plant–soil microbe interactions influence plant coexistence (Bever et al., 2010, Ke30

and Miki, 2015, Bever et al., 2015, Kandlikar, 2024). The PSF framework has also been used to31

explore how soil microbes affect patterns in the relative abundance of plant communities (Mangan32

et al., 2010, Reinhart et al., 2021), restoration success (Wubs et al., 2016, Koziol et al., 2018), plant33

invasion (Callaway et al., 2004, Suding et al., 2013), and the biodiversity–productivity relationship34

(Kulmatiski et al., 2012, Forero et al., 2021).35

To characterize the direction and strength of plant–soil microbe interactions, most studies36

follow a two-phase experimental design aimed at capturing the two-way interactions between37

plants and soil microbes (Bever et al., 1997). The classic greenhouse experiment consists of a38

“conditioning” phase during which plants modify the soil microbial community, directly followed39

by a “response” phase during which plants of the same or other species respond to the conditioned40

soil community (Bever et al., 2010, Brinkman et al., 2010). This distinct two-phase design elegantly41

captures the necessary information for parameterizing the key terms in the classic plant–soil42

feedback model (Bever et al., 1997, 2012) and has enabled a strong empirical foundation of PSF43

research across ecosystems (Crawford et al., 2019, Yan et al., 2022). However, this approach implies44

a number of assumptions about the nature of plant–soil microbe interactions that do not align45

with our contemporary understanding of their dynamics. In particular, a growing number of46

studies have highlighted the importance of accounting for different temporal and demographic47

dimensions of plant–soil microbe interactions (Kardol et al., 2013, Gundale and Kardol, 2021,48

Chung, 2023). Such evidence should reshape both the design of experiments (e.g., how long49

should the conditioning phase last?) and the interpretation of their results (e.g., how do microbial50
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effects on early-life stage plant performance translate to population-level consequences?). In this51

paper, we focus on two key assumptions: first, the temporal assumption that microbial effects52

develop quickly during the conditioning phase and maintain constant strength over time; and53

second, the demographic assumption that plant biomass performance during the response phase54

reflects microbial impact on plant population growth.55

The conditioning and response phases in two-phase experiments are typically conducted56

over short time frames (e.g., a few months), with the same time frame applied across all species57

despite potential life history and growth trajectory differences between the focal species. Field-58

based studies may also source conditioned soil microbial communities by collecting soil from59

individuals growing in the field, but the age of the conditioning plant is generally unknown. Both60

approaches implicitly assume that microbial effects develop relatively quickly and, perhaps more61

importantly, that these effects maintain constant strength throughout different plant developmental62

stages (Fig. 1a). This assumption is at odds with growing evidence that within a single plant63

generation, microbial communities undergo a continuous turnover (e.g., Edwards et al., 2018,64

Gao et al., 2019), and that their resulting effects on plant performance can vary based on the65

duration of plant conditioning and response phases (e.g., Hawkes et al., 2013, Bezemer et al., 2018,66

Lepinay et al., 2018; Fig. 1b). Moreover, it is often assumed that greenhouse-measured microbial67

effects manifest both spatially (i.e., affecting concurrently growing plants) and temporally (i.e.,68

carrying over through time with little change in its impact; Ke and Levine, 2021). However,69

predictions made based on studies that conduct the response phase immediately following the70

conditioning phase neglect the potential consequences of time lags that occur in nature (Ou71

et al., 2024). Therefore, while experiments are understandably constrained by feasibility, explicit72

examination of the system’s temporal context is critical to better predict how soil microbes shape73

natural plant communities.74

The short-term nature of most experiments also constrains researchers to focus on a sin-75

gle plant demographic response that presumably reflects the most critical impact of the mi-76

crobial community (Ke and Wan, 2023). The most frequently measured performance proxy is77

plant biomass, which is then used to calculate theoretically derived metrics to infer how soil78

microbes influence plant coexistence. For instance, the biomass of plants in conspecific- and79
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heterospecific-conditioned soils can be used to calculate the pairwise feedback metric that quanti-80

fies the frequency-dependent feedback loops generated by plant–soil microbe interactions (Bever81

et al., 1997). Negative frequency-dependence arises when both plants condition their soil microbes82

in a way that favors heterospecifics over conspecifics, thereby promoting plant coexistence (Craw-83

ford et al., 2019). In the context of the classic PSF model, where soil microbes drive plant community84

dynamics by changing plants’ intrinsic growth rates (Bever et al., 1997), these metrics operate under85

the assumption that plant biomass performance is a proxy for plant population growth. However,86

soil microbes can also affect other demographic processes across the plant life cycle that are not87

captured simply by measuring plant biomass (e.g., changing seed and seedling survival rates or the88

nature of density-dependence among plants), potentially with opposing effects at different plant89

ontogenetic stages that lead to different coexistence predictions (Dudenhöffer et al., 2018, Dostálek90

et al., 2022). Integrating these different impacts, instead of making predictions based on microbial91

effects on any one life stage, is another challenge when predicting the long-term demographic92

consequences of soil microbes.93

Here, we discuss the two critical assumptions regarding temporal and demographic aspects94

of plant–soil microbe interactions in nature. We aim to highlight the relevance of these assumptions95

when extrapolating greenhouse results, and outline future empirical and theoretical avenues to96

incorporate them. In particular, we advocate for a shift from using biomass-based performance97

indices to parameterizing patch occupancy models and plant demographic models with microbial98

effects. While these biologically important complications make experiments more logistically99

challenging, we argue that integrating the temporal and demographic details can better predict100

the outcome of plant–soil microbe interactions in their natural context.101

II. Significant consequences of overlooking the temporal and demo-102

graphic aspects of plant–soil microbe interactions103

To motivate our thesis that explicitly evaluating the variation in microbial effects across time and104

across different life stages is important for predicting their consequences in nature, we first present105

a simple plant demographic model that illustrates the potential consequences of ignoring these106
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temporal dynamics. Specifically, we consider two annual plant species, N1 and N2, with dynamics107

described by the Beverton–Holt annual plant model:

Ni,t+1 =

Survival of
ungerminated seeds︷ ︸︸ ︷
si (1 − gi)Ni,t +

Intrinsic fecundity of germinated seeds︷ ︸︸ ︷
λigiNi,t

1 + αiigiNi,t + αijgjNj,t︸ ︷︷ ︸
Effect of neighbors

,

with subscripts i and j indicating species 1 or 2. The first term represents the survival of ungermi-108

nated seeds, with gi and si representing seed germination and survival rate, respectively (circular109

loop in Fig. 2A). The second term represents seed production and density-dependent interactions110

among germinated seeds, with λi, αii and αij representing intrinsic plant fecundity, intraspecific111

and interspecific competitive impact experienced by Ni, respectively (rightward arrows in Fig. 2A).112

As opposed to biomass-based metrics, this demographic model provides the opportunity to study113

microbial effects on five different demographic parameters (i.e., gi, si, λi, αii, and αij). For short-114

term greenhouse studies comparing these demographic processes in conditioned versus sterilized115

soil, this model offers a way to predict the long-term effect of soil microbes on plant competitive116

outcomes.117

As a case study, consider a scenario in which pathogenic microbes operate by harming one of118

these demographic processes for a given species. If a short-term greenhouse study were to suggest119

that the primary effects of the soil pathogen is to reduce species 1’s seed survival (s1) by 10% while120

leaving s2 unaffected, the model would predict negligible impacts of the soil microbes on long-121

term plant community dynamics. This is illustrated in the left panel of Fig. 2B, as the grey lines122

(indicating species abundance under no pathogenic impact) and blue lines (indicating a pathogenic123

impact on species 1’s seed survival) almost overlap completely. If instead the greenhouse study124

were to find that the pathogen decreases plant 1’s intrinsic fecundity (λ1) by 10%, the model125

predicts substantially lower population sizes for species 1 in the long-term (≈ 18% reduction in126

equilibrium abundance). This exercise highlights the importance of understanding where in the127

plant demographic cycle microbial effects arise, an aspect of plant–soil microbe interactions that128

is often overlooked when assuming a single performance measurement can predict demographic129

outcomes.130
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Further suppose that the pathogenic effects measured in the short-term greenhouse aggravate131

over time in the field, for example due to the gradual accumulation of soil pathogens across multiple132

generations (Diez et al., 2010, Day et al., 2015). The right panel of Fig. 2B depicts the competitive133

outcomes caused by different microbial effects assuming that the 10% decrease in s1 and λ1 after one134

generation intensified to an 80% decrease by the end of eight generations (i.e., 10% decrease after135

every generation). While the temporally-intensifying pathogenic effect on s1 (blue lines) remained136

relatively insignificant, the pathogenic effect on λ1 (orange lines) became so strong that it resulted137

in the exclusion of N1. This simulation exercise demonstrates the consequence of neglecting the138

temporal dynamics of plant–soil microbe interactions, a realistic concern in nature that is often139

replaced by the simplifying assumption of a constant microbial effect in greenhouse experiments.140

141

III. Dissecting different temporal dimensions of microbial effects142

Studies on the temporal patterns of plant–soil microbe interactions have classically focused on its143

variation along plant succession, which typically involves plants with different traits or shifts in144

the external environment (Kardol et al., 2006, 2013, Bauer et al., 2015). However, temporal variation145

in plant–microbe interactions also occurs across shorter time scales because the conditioned soil146

microbial community and plant response both vary over time (Fig. 1B). Recognizing that plant–147

soil microbe interactions are not constant through time directly influences the experimental design148

and how we interpret experimental results. Moreover, this temporal variability may be a key149

mechanism behind the effects of phenological mismatch between plants and soil microbes (Peay,150

2018, Rudgers et al., 2020). In this section, we review evidence of temporal variability and discuss151

mechanisms by which the impact of microbial communities on plant biomass performance varies152

with the duration of the conditioning and response phases (subsection III.1), as well as the time lag153

between consecutive generations (subsection III.2). We then discuss how to design experiments154

that tackle the temporal complexities observed in nature (subsection III.3). Note that for this section155

we focus on studies that measure plant biomass as the key performance proxy; we will discuss156

other demographic responses in section IV.157
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III.1 Temporal development during the conditioning and response phases158

As the strength and direction of plant–soil microbe interactions depend on the timing of interac-159

tions, the duration of the conditioning and response phases influences the greenhouse-measured160

interaction strength. By compiling information on the experimental duration of studies included161

in two prominent meta-analyses (Crawford et al., 2019, Yan et al., 2022), we showed that the length162

of conditioning and response phases are short in most studies (Fig. 3). The median conditioning163

length is 3.5 months (n = 59 studies, after excluding 47 studies with field-collected soils) while that164

of the response phase is 3 months (n = 106 studies). Extrapolating from these experiments to predict165

the long-term consequences of soil microbes is based on the assumption that the relative impact of166

conspecific- and heterospecific-conditioned soils remains constant throughout plant development.167

The significance of overlooking the temporal development of plant–soil microbe interactions is168

exemplified when one considers plants with different life histories. For example, 20% of studies169

(21 out of 106) in Fig. 3 evaluated microbially mediated stabilization between plant species pairs170

comprised of one annual and one perennial species while implementing the same (usually short)171

experimental duration. This overlooks the potential for short- and long-lived plants to condition172

microbial communities at different rates, such that the same duration of soil conditioning may173

correspond to different developmental stages and microbial effects (Kulmatiski et al., 2017): the174

species-specific microbiome of a short-lived annual plant may be fully conditioned by the end of175

an experiment, whereas that of a long-lived perennial may require a longer conditioning time.176

Similarly, a short response phase may capture the full physiological response of an annual plant,177

while that of a perennial may vary with its ontogeny. This mismatch in temporal development178

patterns highlights the challenge of interpreting experimental results in the context of the focal179

system’s natural history.180

Compared to the classic two-phase design with a single fixed duration of soil conditioning181

(Fig. 4A), a few studies have grown plants in soils that were conditioned for different duration182

(red vertical arrow (i) in Fig. 4B). Studies have shown that the relative impact of conspecific- and183

heterospecific-conditioned soil on the responding individual can vary with the duration of soil184

conditioning. For example, Lepinay et al. (2018) found that after a brief conditioning period of185

two weeks, heterospecific soil had a more negative impact on Rorippa austriaca performance than186
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its conspecific soil. However, a longer duration of soil conditioning resulted in the opposite re-187

lationship: conspecific soil had an increasingly stronger negative impact peaking at six weeks188

of conditioning, whereas the negative effect of heterospecific soils diminished after four to eight189

weeks of conditioning. In a more natural setting, Ke et al. (2021) studied how the microbial impact190

varied with soil conditioning length by transplanting seedlings into field-conditioned soil collected191

under plant individuals of different ages. They found that the soil microbial community under-192

went continuous successional dynamics over the span of 20 years and three out of four species193

experienced negative microbial effects that intensified with longer conditioning time. Importantly,194

these results have crucial implications on the design of two-phase experiments: arresting soil195

conditioning at different time points causes the responding plant to encounter microbial commu-196

nities with different compositions and functions, thereby giving rise to different plant–soil microbe197

interactions.198

Previous experimental studies on the temporal dynamics of plant–soil microbe interactions199

have largely focused on the development of microbial effects across the lifespan of the responding200

individual, which is typically achieved by harvesting responding plants at various time intervals201

(Kardol et al., 2013, Gundale and Kardol, 2021; red diagonal arrow (ii) in Fig. 4B). For example,202

by sequentially harvesting seedlings at four time points spanning 19 months, Hawkes et al. (2013)203

showed that the microbial effect experienced by native plants became more negative through time,204

whereas the development patterns for invasive plants were more variable. Recent studies have205

also highlighted that other factors can modify the temporal pattern of microbial effects during206

the response phase (Dostál, 2021, Bezemer et al., 2018). For instance, harvesting twice every week207

for 11 weeks, Bezemer et al. (2018) showed that the negative effect of conspecific-conditioned soil208

experienced by Jacobaea vulgaris attenuated as plants became older; however, when grown together209

with a heterospecific competitor, the negative effect instead aggravated over time (but see Dostál,210

2021 for a nonlinear pattern for three harvests spanning 13 months). Together, this empirical211

evidence provides a strong impetus to consider temporal variability in the response phase since212

harvesting an experiment at different endpoints can alter our understanding of the microbial213

effect.214

The temporal development of plant–soil microbe interaction likely occurs due to shifts in the215
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composition and/or functionality of microbial communities as plants mature or enter different de-216

velopmental stages (Chaparro et al., 2013, Dombrowski et al., 2016, Edwards et al., 2018, Hannula217

et al., 2019). Mechanisms underlying these shifts in soil microbial communities include physio-218

logical changes in nutrient allocation or root exudation across plant ontogenetic stages (Chaparro219

et al., 2013, Zhalnina et al., 2018), as well as an increase in immunity and antibiotic defense against220

pathogens as plants mature (Bulgarelli et al., 2013, Chaparro et al., 2013). Furthermore, alterations221

prompted by plants can lead to shifts in microbe–microbe interactions and the processes governing222

microbial community assembly (Barret et al., 2015, Herrera Paredes and Lebeis, 2016, Bittleston223

et al., 2021), all of which may trigger further responses in plant physiology via a complex interplay224

between mechanisms. Importantly, as conditioning and response processes operate simultane-225

ously in nature, the same set of mechanisms apply to explain temporal patterns in both phases.226

For example, strengthening of immunity as plants mature can reduce pathogen abundance as227

the conditioning phase progresses (Bulgarelli et al., 2013); it can also reduce plant susceptibility228

to pathogens and alleviate negative microbial effects experienced by the plant as the responding229

individual matures. Similarly, mechanisms that reduce the abundance of beneficial microbes after230

soil conditioning (e.g., mature plants becoming less reliant on mutualistic partners) also act upon231

the responding individual to diminish the observed positive microbial effect. We will elaborate232

on necessary experiments to tease apart different temporal dimensions and mechanisms in the233

subsection III.3.234

III.2 Alterations of microbial effects after plant death235

One common implicit assumption in plant–soil feedback studies is that greenhouse-measured236

microbial effects manifest similarly on plants neighboring the focal individuals as on individuals237

that arrive and grow in the conditioned soil after the focal plant. However, whether microbial238

effects carry over through time and how long they persist remains an understudied temporal aspect239

of plant–soil microbe interactions. This question is especially important for systems with discrete240

growing seasons or dispersal limitation, where a temporal lag exists between the senescence of241

one plant (the conditioning individual) and the growth of another (responding) individual. This242

introduces a lag phase during which the conditioned soil is left unoccupied for an extended period243
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of time; processes such as litter decomposition, abiotic filtering, and stochastic drift may restructure244

the microbial community during such lags. Studies growing seedlings in soils collected from dead245

individuals (red vertical arrow (iii) in Fig. 4B) suggest that such lags can have distinct effects across246

different systems. For example, Esch and Kobe (2021) showed that the negative effects of soil from247

live Prunus serotina on the survival of conspecific seedlings faded away within one year after tree248

removal. Conversely, Bennett et al. (2023) showed that microbial communities from soils collected249

under dead and live adult Populus tremuloides trees had similar effects on conspecific seedlings. As250

an alternative to collecting soil from naturally occurring dead individuals, Ou et al. (2024) modified251

the two-phase experiment to include a six-month delay between the conditioning and response252

phase; their results suggest that the seasonal lag in Mediterranean annual plant systems changes253

the microbial community and their corresponding impact on plant coexistence. Below, we discuss254

the mechanisms that could either maintain or alter microbial effects when a temporal lag exists255

between consecutive generations.256

Microbial effects could persist after active plant conditioning ceases due to the continued257

survival and functioning of the conditioned microbial community in the soil (Lennon and Jones,258

2011, Pepe et al., 2018, Esch et al., 2021, Hannula et al., 2021). For example, Esch et al. (2021)259

found that the persisting pathogenic oomycetes collected from live versus dead tree stumps have260

similar negative effects on conspecific seedling survival. Similarly, Pepe et al. (2018) showed that261

arbuscular mycorrhizal fungi remain active and can spread from roots after host shoot removal.262

The maintenance of microbial activity can occur if root systems remain active after the removal263

of aboveground tissues or if the release of nutrients from dead belowground tissues mirrors264

exudates from living plants (Johansen and Jensen, 1996, Müller et al., 2013). Additionally, trophic265

flexibility (e.g., saprotrophic ability of certain pathogens; Bonanomi et al., 2010) and dormancy266

of soil microbes can allow the microbial communities to persist after the death of their host,267

enabling microbes to wait for the arrival of a new host (Lennon and Jones, 2011, Shade et al.,268

2012, Shemesh et al., 2023). In these cases, the succeeding (response) individual will experience a269

similar microbial effect despite the temporal lag in arrival timing, and predictions from immediate270

transplant experiments are relevant to natural systems.271

However, various processes can cause the microbial community to change after plants stop272
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actively conditioning the soil, such that subsequent responding individuals encounter a different273

soil microbial community than that obtained in an immediate transplant scenario (Grove et al., 2015,274

Veen et al., 2019, Ou et al., 2024). The process of litter decomposition can introduce phyllosphere275

microbes to the soil (Fanin et al., 2021, Minás et al., 2021) and release chemicals and nutrients276

that shift microbial communities (Veen et al., 2021). Additionally, different causes of plant death277

(e.g., herbivory, fire, and disease) are often associated with further changes in abiotic factors,278

with potential effects on the composition and function of microbial communities. For example,279

canopy gaps caused by wind disturbances modify nearby light and moisture levels in a way that280

suppresses pathogens (Augspurger, 1984, Reinhart et al., 2010, Nagendra and Peterson, 2016).281

Finally, stochastic drift could decouple microbial community from plant conditioning influence if282

the soil remains uncolonized over an extended period of time due to plant propagule limitation. In283

these scenarios, immediate transplant experiments fail to capture the microbial effects experienced284

by the responding plant in nature.285

III.3 Implications for experimental design286

While an increasing number of studies have recognized the temporal dimensions of plant–soil287

microbe interactions, synthesizing the factors contributing to this variability, e.g., the life history of288

plants and functional groups of microbes involved, requires more targeted studies. Here, we rec-289

ommend a path forward for understanding these context dependencies. First, the temporal settings290

of the experiment should guide our interpretation of the results. For instance, in Mediterranean291

plant communities where the growing season only lasts a few months, traditional experiments in292

which a short-term conditioning phase is immediately followed by the response phase may ade-293

quately reflect potential microbial effects on concurrently growing neighbors that unfold within294

one growing season. However, such a design may not be adequate to project microbial effects on295

population dynamics across years because it overlooks the temporal lag associated with the clear296

seasonality of plant growth in nature (Ou et al., 2024). Second, we encourage modification of the297

classic two-phase design (Fig. 4A) to reflect the temporal aspects of a focal plant–soil system in298

nature. For Mediterranean annual plant communities, mirroring the temporal dynamics of the299

natural system by incorporating a decay phase during which the conditioned soils are exposed300
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to a prolonged drought with no vegetative growth (red vertical arrow (iii) in Fig. 4B) may pro-301

vide a better understanding of how soil microbes shape plant community dynamics across years302

(Ou et al., 2024). Moreover, researchers can build on long-term monitoring plots and historical303

information to account for variation in conditioning duration, host plant age, or time since host304

tree death. This approach may be especially applicable in studies that focus on long-lived plants,305

which often source field-conditioned soils for greenhouse experiments (44%; 47 out of 106 studies306

in Fig. 3). For example, Ke et al. (2021) estimated plant age with historical aerial photos and307

employed a chronosequence approach to study the influence of soil conditioning length. Other308

examples include using host tree size as a proxy of conditioning time (Chen et al., 2019) and uti-309

lizing chronosequences of abandoned fields or agricultural harvest times to study the persistence310

of microbial effects (van de Voorde et al., 2012, Esch and Kobe, 2021).311

One can also design experiments that isolate a particular facet of temporal variability to help312

disentangle the mechanisms behind observed temporal patterns. Current studies on the temporal313

development of microbial effects typically employ sequential harvesting, where the observed314

temporal changes result from the combination of varying plant physiological responses and any315

changes to the soil community that are due to the effects of the responding plant itself (red diagonal316

arrow (ii) in Fig. 4B). To isolate the effects associated with changing soil microbial communities317

during soil conditioning, studies could plant seedlings of the same age in soils with different318

conditioning duration (red vertical arrow (i) in Fig. 4B). Alternatively, if the goal is to isolate the319

effects caused by changing plant physiology, an experiment could instead grow plants of different320

ages/sizes (kept in a relatively sterilized environment such as a Magenta box before transplanting)321

in soils with identical conditioning duration (red horizontal arrow (iv) in Fig. 4B). A recent study322

by Liu et al. (2024) utilized such experimental design to illustrate the importance of conditioning323

and response duration as well as the underlying mechanisms. In addition, mutants or cultivars324

with different developmental rates can also be used to separate the effects of plant developmental325

stage (e.g., vegetative growth or flowering) and age per se (Dombrowski et al., 2016). While the326

above scenarios are deliberately artificial, such experiments can provide important mechanistic327

insights into the observed temporal patterns of plant–soil microbe interactions.328

While we have focused on changes happening over the course of a single plant-to-plant329
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replacement, these dynamics are closely related to other temporal patterns. One direction of re-330

search is how microbial effects build up over generations through multiple rounds of conditioning331

and response. A wealth of literature has explored the microbial changes underpinning reduced332

crop yield following repeated planting (i.e., soil sickness; reviewed in Huang et al., 2013) and the333

strengthening of conspecific microbial effects experienced by non-native plants after their intro-334

duction (Diez et al., 2010, Dostál et al., 2013; but see Day et al., 2015). The temporal scale of these335

studies typically spans hundreds of years. While this temporal pattern has been demonstrated336

by experiments using soils with conditioning histories that span multiple generations, few studies337

have generalized the traditional focus of single species to multiple species. In a unique greenhouse338

experiment consisting of two rounds of soil conditioning by different combinations of six plant339

species, Wubs and Bezemer (2018) demonstrated the complicated patterns arising from multiple340

rounds of soil conditioning. Future work can expand upon Wubs and Bezemer (2018) to study341

how the unique sequences of soil conditioning result in different plant–soil microbe interactions.342

Another tightly interconnected aspect is the demographic facet of plant–soil microbial interactions:343

as the responding individual matures, soil microbes can influence various demographic processes344

in addition to varying biomass responses. We elaborate on this in the next section.345

IV. Assessing multiple demographic consequences of soil microbes346

Most two-phase studies of plant–soil microbe interactions are designed to evaluate how different347

soil microbial contexts influence plant biomass performance. Experimentally, the implicit assump-348

tion is that individual biomass at the end of the experiment integrates all critical impacts of the349

microbial community and that variation in individual biomass growth is predictive of variation350

in population growth rates. This assumption corresponds well with the classic feedback model351

of Bever et al. (1997), where microbes regulate the intrinsic growth rate of an exponentially grow-352

ing plant population. However, soil microbes can also alter other key demographic processes353

throughout the plant life cycle that are not directly correlated with biomass accumulation (e.g.,354

seed germination and pollinator visitation in Dudenhöffer et al., 2018). Dostálek et al. (2022)355

demonstrated that it can be difficult to predict plant coexistence by using the microbial effect mea-356

sured at a single life stage – while biomass performance suggests self-limitation of both Bromus357
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erectus and Inula salicina, including microbial effects on seed germination and fruit production sug-358

gests that both species in fact benefited from self-conditioned soil. Here, we highlight key studies359

that provide insights into microbial control over non-biomass plant demographic processes, with360

a particular focus on early life stage transitions.361

IV.1 Microbial regulation of seed-to-seedling transition362

Soil microbes can have drastic consequences on the early life stages of plants. While these effects363

can arise from microbial effects on distinct life history processes (i.e., seed survival, germination,364

and early seeding survival; Fig. 5), empirical studies often group them together given the logistical365

challenges of separating these effects in field settings. For example, when studying long-lived366

plants such as forest trees, repeated demographic censuses are often used to monitor seed-to-367

seedling transitions (e.g., Harms et al., 2000, Swamy et al., 2011). A large body of evidence368

for microbial effects on plant early life stages comes from field studies finding that fungicide369

applications alter patterns of seed and seedling demography (e.g., Bell et al., 2006, Bagchi et al.,370

2014, Krishnadas et al., 2018, Song and Corlett, 2022). Many of these studies are conducted371

to evaluate soil microbes as potential drivers of the Janzen–Connell hypothesis (Janzen, 1970,372

Connell, 1971)) and conspecific negative density-dependence (CNDD). These hypotheses suggest373

that the aggregation of host-specific enemies around adult plants reduces the survival probability374

of seedlings that disperse close to adults and under high conspecific densities. While evaluating375

the compound microbial effect across multiple early life stages can yield important insights, studies376

that isolate microbial effects on specific underlying demographic transitions (Fig. 5) can enable a377

nuanced and mechanistic understanding of microbial effects on plant population dynamics.378

Soil-borne pathogens can cause substantial mortality at the seed stage across biomes (e.g.,379

Kotanen, 2007, Sarmiento et al., 2017, Li et al., 2019). One system where the impact of fungal seed380

pathogens has been systematically dissected is that of pioneer tree species in neotropical forests,381

especially those in the genus Cecropia. As pioneer species whose seeds need to germinate quickly382

in response to new gap openings, these species produce seeds that can persist in the soil until the383

formation of nearby gaps. These seeds are vulnerable to pathogen attack during their time in the384

soil seed bank, and as a result, fungicide treatments can nearly double their survival and emergence385
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(Dalling et al., 1998, Gallery et al., 2010). Moreover, Dalling et al. (1998) found that seeds were more386

susceptible to pathogen attack in soils close to conspecific adults than in soils far from conspecifics,387

implicating soil pathogens as potential drivers of Janzen–Connell dynamics. Furthermore, recent388

advances have employed molecular methods toward understanding longstanding questions about389

pathogen host specificity. Zalamea et al. (2021) found that seeds of closely related Cecropia species390

harbor vastly distinct fungal communities, with species identity explaining substantially more391

variation than the seeds’ location or their viability. Working with a more diverse group of pioneer392

tree species, Sarmiento et al. (2017) showed that while many fungi can grow on seeds of multiple393

plant species, their effects on seed mortality are highly species-specific. Together, this series of394

studies has highlighted soil-borne fungal seed pathogens as key microbial players in the dynamics395

of pioneer trees in tropical forests. While quantifying microbial effects on seed survival requires396

laborious methods (e.g., tetrazolium staining for testing seed viability; Sarmiento et al., 2017), a397

better understanding of these effects is critical given that seed limitation can be a bottleneck on398

plant population dynamics (Harper, 1977, Clark et al., 2007).399

Soil microbes can also affect the rates and timing of germination. Such regulation primarily400

arises due to the production and/or metabolism of key germination-related phytohormones like401

gibberellins (reviewed in Keswani et al., 2022 and Bottini et al., 2004) or ethylene (reviewed in402

Ravanbakhsh et al., 2018 and Ishaq, 2017). While studies of how soil microbes regulate germination403

have historically focused on managed settings, evidence that microbes also affect germination404

in natural settings is now accumulating. In one of the few two-phase experiments focused on405

pairwise feedback effects on germination, Miller et al. (2019) found species-specific effects of406

conditioned microbes on germination. Specifically, the legume Desmodium illinoense achieved lower407

germination rates in conspecific-conditioned soils than in sterilized or heterospecific-conditioned408

soils, while germination of Bromus inermis and Solidago canadensis was unaffected by soil microbes.409

Across a large-scale microcosm experiment, Eldridge et al. (2021) found that soil bacterial and410

fungal communities help explain substantial variation in patterns of seed germination across nine411

plant species, suggesting a relationship between soil microbes and plant germination that is not412

explained simply by their shared responses to abiotic soil properties. Even when soil microbes do413

not affect overall rates of germination, they can alter the phenology of germination (Keeler and414
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Rafferty, 2022) which could either harm (e.g., if later germination reduces seedlings’ performance415

due to competition; Orrock and Christopher, 2010) or benefit (e.g., if later germinants escape416

severe competition at the seedling stage or avoid abiotic stress; Leverett et al., 2018) population417

growth.418

Finally, soil microbes also play a key role in determining the survival of seedlings after419

germination. The widespread role of mycorrhizal symbioses in promoting seedling survival and420

the potential for soil-borne pathogens to cause mortality among seedlings have been studied for421

decades and reviewed elsewhere (e.g., Gilbert, 2002, Horton and van der Heĳden, 2008). Recent422

advances have focused on elucidating the relative role of harmful and beneficial soil microbes in423

driving seedling survival and establishment across different environmental contexts, including424

abiotic conditions (Bingham and Simard, 2011), the relative abundance of conspecific and het-425

erospecific adults (Teste et al., 2017), and the functional groups of mycorrhizal fungi (Liang et al.,426

2016, Bennett et al., 2017). In addition to studies that directly track the fate of newly germinated427

seedlings in specific microbial contexts, studies that monitor the fate of older plant individuals428

also often speculate soil microbes as the underlying mechanism (e.g., CNDD studies on the sur-429

vival of larger individuals; Comita et al., 2010). While, in comparison, the effect of soil microbes430

on seedling survival has rarely been the target variable in biomass-focused greenhouse experi-431

ments, recent studies have also started to quantify the contribution of this demographic process to432

microbe-mediated coexistence (Dudenhöffer et al., 2022, Chung et al., 2023, Pajares-Murgó et al.,433

2024).434

IV.2 Microbial effects beyond early life stages435

As seedlings establish and grow into reproductive adults, the soil microbial community continues436

to affect their performance in various ways not captured by experiments that focus only on plant437

biomass. While an exhaustive review of all such effects of soil microbes is beyond the scope of438

this study, we briefly highlight soil microbial regulation of flowering phenology and susceptibility439

to herbivores. Over the past decade, evidence of microbial regulation of flowering phenology440

across systems has become widespread (Lau and Lennon, 2012, Wagner et al., 2014, Igwe et al.,441

2021). Although the consequences of such phenological shifts at the population level are seldom442
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quantified, the few-day differences reported in these studies could in principle have drastic con-443

sequences for plant fitness, especially under abiotic stress when earlier flowering can be crucial to444

reproductive success and fitness (reviewed in Kazan and Lyons, 2016, O’Brien et al., 2021). The soil445

community can also regulate plant susceptibility to invertebrate herbivores (e.g., Howard et al.,446

2020, Pineda et al., 2020, Kalske et al., 2022), with such effects likely arising due to soil microbe-447

induced changes in leaf metabolomes or volatile organics (Kalske et al., 2022, Huberty et al., 2022).448

The consequences of microbe-mediated shifts in plant–herbivore interactions on insect population449

dynamics are becoming increasingly well-studied (reviewed in Shikano et al., 2017), but whether450

these changes affect plant population dynamics is less well established. Soilborne pathogens can451

also contribute to inter-specific and spatial variability in rates of adult tree mortality (Das et al.,452

2016). The integration of these microbial effects remains an ongoing challenge. In light of this, we453

propose that a promising approach is to combine experiments with system-specific models that454

can assess their long-term consequences on plant population dynamics.455

IV.3 Implications for experimental design456

While incorporating all aforementioned demographic impacts of soil microbes is logistically chal-457

lenging, we also see a path forward. Current experimental studies of plant–microbe interactions458

often transplant pre-germinated seeds into conditioned soils, thereby neglecting the impact of soil459

microbes on seed survival and germination. Accordingly, a first step in enhancing our under-460

standing of this phenomenon is for two-phase studies to plant ungerminated seeds and report461

germination rates along with the biomass performance and survival rates of germinated plants.462

Studies can employ statistical approaches (Dudenhöffer et al., 2022, Chung et al., 2023) or other463

population demographic models (David et al., 2019, Dostálek et al., 2022) to integrate the impact464

of microbes on multiple early stage transitions (see also section V.). Moreover, for short-lived465

plants, one can aim to follow the entire plant life cycle. For example, Dostálek et al. (2022) doc-466

umented seedling establishment and biomass dynamics for two growing seasons, and recorded467

final fruit production of plants in different soil microbial backgrounds. While such an experiment468

is more challenging, the matrix population model parameterized by Dostálek et al. (2022), where469

soil microbes modulate transition probabilities across states, enables a more nuanced estimate of470
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microbial impact compared to solely relying on biomass-based metrics.471

Compared to greenhouse-based plant–soil feedback studies that focus on biomass perfor-472

mance, CNDD studies using field census data are arguably more directly linked to population473

growth due to their emphasis on individual survival. However, observational CNDD studies474

can be limited as it can be challenging to attribute demographic patterns to soil microbes, and475

the impact of heterospecifics, which are necessary to infer coexistence outcomes, is sometimes476

overlooked. We propose that controlled experiments could complement census data for more477

mechanistic insights. For example, field-based biocide experiments have been used to identify soil478

microbes as key drivers of Janzen–Connell effects in seed and seedling mortality (Bell et al., 2006,479

Bagchi et al., 2010, Song and Corlett, 2022, Krishnadas and Comita, 2018). Furthermore, adding a480

reference treatment in randomly located field soil allows one to estimate frequency-independent481

microbial impacts on survival, aligning with recent studies that emphasize plant–soil microbe482

interactions within modern coexistence theory (Kandlikar et al., 2019, Ke and Wan, 2020). Green-483

house experiments can also be adapted to capture the density-dependent microbial effects implicit484

in CNDD studies. To this end, one can use field-conditioned soil from locations with varying adult485

densities or perform a pot experiment with varying seedling densities (Ke and Wan, 2023). These486

modifications in study design can help bridge the gap between microbial impacts inferred from487

experiments and field census data.488

Finally, we argue that researchers should identify the demographic process that acts as a489

bottleneck for plant population growth in the focal system and prioritize studying the microbial490

impact on that specific demographic process. For example, in communities dominated by species491

with persistent seed banks, the microbial effect on seed survival may be particularly important.492

In systems where plant germination is highly constrained by soil-borne pathogens, germination493

success in soils with different conditioning histories should be measured. We also recognize494

that in some plant communities, individual biomass growth indeed correlates well with critical495

demographic processes. For annual plants, individual biomass at the time of peak flowering may496

reflect fecundity (Neytcheva and Aarssen, 2008, Younginger et al., 2017). For forest trees, since497

seedling survival beneath the forest canopy is often size-dependent (Chang-Yang et al., 2021),498

microbial effects that reduce seedling biomass lead to higher mortality and thus have a clear499
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demographic consequence on plant populations. However, while individual biomass can serve500

as a proxy for population growth in these particular systems, it is crucial to recognize that the501

underlying demographic process enabling this interpretation varies among systems.502

V. Modeling frameworks for incorporating temporal and demographic503

aspects of plant–soil microbe interactions504

As reviewed in the above sections, the strength and direction of plant–soil microbe interactions505

vary along different temporal dimensions and can influence various demographic processes. While506

empirical studies are essential for growing our understanding of these aspects, predicting their507

long-term consequences requires an integration of data with models of plant population dynamics.508

Therefore, we encourage studies to go beyond biomass-based inferences to demographic models509

that directly incorporate microbial effects. Developing suitable theoretical models for the focal510

plant–soil system and connecting them with empirical data is a pressing research direction. Below,511

we discuss two theoretical frameworks that are especially well-suited to incorporate the temporal512

and demographic components of plant–soil microbe interactions and highlight studies that have513

parameterized them with empirical data.514

V.1 Patch occupancy models515

Patch occupancy models represent a relatively straightforward framework for studying plant–soil516

microbe interactions (Pacala and Tilman, 1994, Mouquet et al., 2002). In this group of models,517

plants compete for unoccupied sites (patches) and the probability that a particular plant species518

establishes in a local site depends on the site’s microbial legacy (Stump and Comita, 2018, Miller519

and Allesina, 2021, Ke and Levine, 2021). Such models can either be spatially implicit, which520

assumes that the landscape can be divided into an infinite number of patches and tracks the521

proportion of different plant–soil microbe states (e.g., Miller and Allesina, 2021, Ke and Levine,522

2021), or spatially explicit, which considers a fixed-size arena and allows one to consider spatial523

proximity when modeling microbial impact (e.g., the diffusion of microbial effects from live indi-524

viduals nearby; Bever et al., 1997, Mack and Bever, 2014, Bauer et al., 2015). Detailed formulation525
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aside, a common assumption in such models is that plants only indirectly influence each other by526

modifying soil microbial legacies. This assumption aligns well with two-phase experiments that527

grow individual plants in soils with different conditioning histories, and as such, patch occupancy528

models can be readily parameterized with biomass measurements from pot experiments (e.g.,529

by assuming establishment probability scales with the relative biomass performance). Alterna-530

tively, patch occupancy models can also be parameterized with recruitment data from repeated531

censuses, thereby incorporating microbial effects on multiple early life stages (e.g., seed survival,532

germination, and seedling survival in Fig. 5; Krishnadas and Stump, 2021). Due to this connec-533

tion with empirical data, patch occupancy models are commonly used in the PSF literature when534

studies wish to extrapolate predictions based on pairwise biomass-based metrics to multi-species535

communities (e.g., Mangan et al., 2010, Teste et al., 2017, Dudenhöffer et al., 2022).536

The patch occupancy framework offers a pathway to effectively incorporate various temporal537

aspects of plant–soil microbe interactions (Fig. 1; see also an example in Box 1). This is because538

such models can treat different developmental stages of the soil microbial community as distinct539

states so that the transitions between states reflect the conditioning and decay rates of soil microbes.540

The explicit inclusion of microbial legacies in the form of an unoccupied but conditioned patch541

state differs from previous feedback models, which usually assume tight coupling between plants542

and microbes (Eppinga et al., 2018, Mack et al., 2019). For example, Ke et al. (2021) modified a543

previous model (Fukami and Nakajima, 2013) by making microbial effects vary with the duration544

of soil conditioning, which in turn influences the transient trajectory of community assembly. In545

another example, Ke and Levine (2021) used a spatially implicit model to show that the strength of546

stabilization driven by host-specific pathogens depends on how quickly the conditioning effects of547

plants erode. The above models directly track the changes of microbial impact on plants through548

time, and can thus be parameterized with the type of experiments mentioned in subsection III.3.549

Alternatively, one can build simulation-based models that explicitly track the population size of550

microbes at each local site, allowing the temporal development and decay of microbial effects to551

emerge naturally (Schroeder et al., 2020). However, such models are harder to parameterize with552

empirical data since they require detailed knowledge of microbial traits and population dynamics553

(Jiang et al., 2020).554
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V.2 Models incorporating multiple demographic processes555

In contrast to patch occupancy models, which usually assume that microbes only impact the estab-556

lishment process, one can also formulate models that directly consider distinct microbial impacts557

on distinct plant demographic processes. Such an approach, which can be difficult to implement558

due to the extensive amount of work required to obtain all parameters, may be particularly fruitful559

in demographically complex systems. Demonstrating the power of this approach, a series of stud-560

ies (Mordecai, 2013a,b, 2015, Uricchio et al., 2019) integrated models and empirical observations561

to investigate how pathogens affect competition between native perennials and invasive annual562

grasses. The plant demography components of these models begin with an approach often used563

for annual plants: they track the yearly population of each species’ seeds, which persist in the soil564

seed bank from previous years or are produced by reproductive-stage individuals, and capture the565

effect of plant competition through density-dependent decreases in seed production (Fig. 2A; see566

also section II. and Box 2). The authors then incorporated perennial demography by additionally567

tracking the number of adult perennials, reflecting successful seed germination and recruitment,568

as well as adult survival from the previous year. This model structure can flexibly incorporate569

the effect of microbes by allowing them to modify various demographic transitions; in particu-570

lar, the authors focused on a soil-borne pathogen that reduces seed persistence and germination571

(Mordecai, 2013a). With a plant competition experiment and manipulations of pathogen densities,572

Mordecai (2013b) parameterized a model with density-dependent microbial effects and concluded573

that pathogen spillover promotes the persistence of perennial bunchgrasses. Subsequent work574

further demonstrated the adaptability of this framework: Mordecai (2015) showed that the plant575

life stage attacked by pathogens (i.e., seedlings or dormant seeds) and environmental variation576

jointly determined the coexistence of competing annual plants. In another application, Uricchio577

et al. (2019) combined field observations and experiments to parameterize an even more realis-578

tic model, considering multiple annual and perennial species and incorporating two additional579

microbial effects (i.e., the impacts of foliar pathogens on seedling survival and adult perennial580

fecundity).581

In addition to integrating multiple microbial effects, a demographically explicit model can582

help identify the most critical microbial effect via simulations. For instance, in the annual–perennial583
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plant model in Uricchio et al. (2019), foliar pathogens have little impact but seed pathogens can584

have a more significant effect on perennial competitors in the system. Such a sensitivity analysis585

is particularly useful when models include many mechanistic parameters for microbial dynamics586

(e.g., Ke et al., 2015, Schroeder et al., 2020) and represents another reason why isolating microbial587

effects on specific demographic transitions can be enlightening. Even for models that do not588

explicitly incorporate microbial dynamics, identifying the bottleneck for population growth can589

provide insights for future studies and guide more targeted experiments. Using an integral590

projection model parameterized with long-term demographic data, Chu and Adler (2015) showed591

that feedback loops during the recruitment stage contributed most to plant coexistence compared to592

that during the growth and survival stages. The authors speculated this is due to the recruitment593

stage involving many demographic transitions that are susceptible to soil pathogens (Chu and594

Adler, 2015). In Box 2, with an annual–perennial plant model incorporating microbial effects595

as qualitative switches in parameter values, we also demonstrate how sensitivity analysis can596

help identify the relative importance of different microbial effects on the perennial plant. In597

sum, formulating demographic models not only allows smooth integration of the temporal and598

demographic dimensions of plant–soil microbe interactions but also provides an opportunity to599

explore their consequences in multi-species communities.600

VI. Conclusion: moving forward with an empirical-theoretical feed-601

back loop602

Since its introduction to community ecology, the study of plant–soil microbe interactions has long603

been shaped by a tight link between empirical and theoretical approaches. By showing how604

empirically tractable greenhouse experiments can yield data to calculate theory-derived metrics,605

the approach from Bever et al. (1997) has motivated more than two decades of research to predict606

the long-term consequences of soil microbes (Crawford et al., 2019). To date, new studies continue607

to follow this integration, proposing new theories to capture different impacts of soil microbes as608

well as new experimental designs to quantify them (e.g., Kandlikar et al., 2019, 2021, Yan et al.,609

2022). Two key assumptions of this approach are that plant–soil microbe interactions follow a610
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simplified temporal trajectory, and that measuring microbial impact on plant biomass captures the611

population dynamic consequences of soil microbes. While such abstractions have helped make612

models generalizable, growing evidence has proven the relevance of the two knowledge gaps when613

predicting the role of soil microbes in natural communities (Chung, 2023). Explicit consideration614

of the temporal and demographic aspects not only leads to new research questions but also allows615

researchers to draw conclusions grounded on relevant experimental settings. As such, we see616

tremendous value in future efforts that aim to (1) develop theoretical models that can explicitly617

incorporate the temporal and demographic components of plant–soil microbe interactions, and618

(2) parameterize such models with corresponding observational data or experiments aimed at619

quantifying these past-missing components.620

New modeling frameworks should be developed in order to incorporate the aforementioned621

temporal and demographic components. Here, we identify two paths moving forward. First,622

patch occupancy models can be used to study the temporal dimensions of plant–soil microbe623

interactions by tracking the transition between different soil microbial states, which impact the624

subsequent establishment of plants in that patch. This framework also echoes recent theoretical625

studies suggesting that competition for limited colonization sites generates more interpretable626

frequency-based dynamics for multi-species communities than do extensions of the classic pairwise627

feedback model (Miller et al., 2022). Second, instead of tracking species’ occupancy frequency, one628

can also build demographic models that explicitly track plant population densities; this approach629

offers the opportunity to easily incorporate microbial effects on multiple plant demographic stages.630

We note that in practice, these modeling approaches are both flexible and can be used to answer631

more than one research question (e.g., decay dynamics and time-dependent feedback can also632

be built into a demographically explicit model; Senthilnathan and D’Andrea, 2023, Zou et al.,633

2024). Ultimately, the choice depends on the research question and the focal plant–soil system.634

For example, in systems with disturbances that may truncate soil conditioning at different timings635

(Nagendra and Peterson, 2016), or those with low propagule availability such that conditioned soils636

are not immediately recolonized, investigating the temporal dimension can provide great insights637

into the role of soil microbes in nature; this can also be done by simulations of time-discrete638

models (Zou et al., 2024) and individual-based models (Zee and Fukami, 2015). On the other hand,639
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when different soil microbes are known to impact different parts of the plant life cycle, integrating640

multiple microbial effects into a single demographic model may be more important.641

While patch occupancy models can be parameterized with either biomass measurements642

(e.g., Mangan et al., 2010, Teste et al., 2017, Dudenhöffer et al., 2022) or census data (e.g., Stump643

and Comita, 2018), we caution that the model itself is agnostic to the demographic details of plant–644

soil microbe interactions and will encompass different microbial effects depending on the data used645

for parameterization (Fig. 5). For instance, Stump and Comita (2018) parameterized their patch646

occupancy model with CNDD patterns based on 5-year seedling survival (Comita et al., 2010),647

which correspond to microbial effects on the survival of established older seedlings. On the other648

hand, Krishnadas and Stump (2021) parameterized a similar model with CNDD patterns based on649

the seed-to-seedling transition, thereby representing microbial effects on recruitment and earlier650

life stages. Moreover, using different types of data to parameterize the model implies different651

assumptions on how microbial effects operate. In particular, using performance measurements652

from single-individual greenhouse experiments (e.g., Teste et al., 2017, Dudenhöffer et al., 2022)653

to parameterize a patch occupancy model implies that the plant community is driven by how654

soil microbes affect the density-independent growth rate of plant populations, whereas using655

CNDD patterns from observational census incorporates how soil microbes and other non-microbial656

mechanisms modify the nature of density dependence among plants.657

Designing new experiments that provide the necessary information to parameterize the new658

plant demographic models of plant–soil microbe interactions is another frontier of research. Some659

models require experiments that are similar to current two-phase experiments. For instance, to660

depict temporal development patterns, one can repeat an experiment along naturally occurring661

variations in the duration of soil conditioning; to track multiple early life stage microbial effects, one662

can directly plant ungerminated seeds into cultivated soils. However, some microbial effects cannot663

be reliably estimated by classic two-phase experiments with a single-growing plant individual. For664

example, if microbes are expected to affect not only plant intrinsic growth rate but also the nature of665

density dependence among plants, then estimating microbial effects requires additional treatments666

beyond the classic two-phase design Recent studies linking plant–soil microbe interactions and667

coexistence theory specifically highlight this scenario where soil microbes influence the model’s668
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density dependence parameters (Kandlikar et al., 2019, Ke and Wan, 2020, Zou et al., 2024), which669

require employing experiments that directly manipulate plant density and soil origin (Chung and670

Rudgers, 2016, Cardinaux et al., 2018). An empirical–theoretical feedback loop is also central to the671

design of such theory-driven experiments. For example, a proposed design based on the premise672

that plant–plant interactions are competitive (Ke and Wan, 2020) was challenged by the observation673

that facilitation is common, leading to a revised density gradient design with greater flexibility (Ke674

and Wan, 2023). Again, the optimal approach depends on feasibility and which research question675

can provide a fundamental understanding of the focal plant–soil system.676

Recent census-based CNDD studies have introduced a promising approach to investigate677

how microbe-mediated plant demography interacts with the three temporal aspects, namely, the678

duration of soil conditioning, the life stage of responding plants, and the time delay between679

consecutive colonizing plants. Current CNDD studies often calculate size-weighted abundance680

when estimating conspecific densities, thereby implicitly considering soil conditioning time by681

linking plant size to microbial effects. Additionally, microbial communities associated with plants682

of different ages can be sequenced to examine the relationship between pathogen accumulation683

and species’ CNDD strength (Chen et al., 2019). Long-term observational data should also allow684

us to test whether conspecific effects change with the age/stage of the responding focal individual685

(Bagchi et al., 2014, Zhu et al., 2015, 2018). For instance, Zhu et al. (2015) showed that the CNDD686

effects attenuated as individuals mature from seedlings to adults. Finally, a recent study also687

pioneered the inclusion of dead tree individuals into the abundance calculation (i.e., the effects of688

decay; Magee et al., 2024). Insights from such CNDD studies can be used to parameterize patch689

occupancy models with corresponding temporal aspects, offering new insights by integrating the690

two overlooked components.691

One of the remaining challenges is to move away from a plant-centered viewpoint towards692

a better understanding of the dynamics and functionality of soil microbial communities (Jiang693

et al., 2020). Theoretical models often assume simplified microbial dynamics (e.g., separation694

of timescales) or treat soil microbes as a qualitative modifier of plant parameters. Incorporating695

microbial community assembly processes, as outlined in section II, can help inform which processes696

need to be prioritized when building mechanistic models of microbial community dynamics (e.g.,697
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Schroeder et al., 2020, see also Zou et al., 2024 for a discrete-time model with explicit consideration698

of the temporal dynamics of soil microbes). Empirically, experiments that establish the causal699

relationship between measured microbial dynamics and plant demographic responses can help700

feed theory with realistically parameterized temporal patterns. To this end, a starting point is701

to simultaneously measure shifts in both plant response and microbial community composition702

within studies that vary the temporal components (e.g., Esch and Kobe, 2021, Ke et al., 2021,703

Hannula et al., 2021, but see Carini et al., 2016 for technical challenges related to erroneously704

detecting DNA from dead microbes in sequencing time series). Moreover, given the functional705

plasticities and redundancies of microbial communities, improvements in identifying microbial706

functionality beyond that based on taxonomic information are also needed. Explicit quantification707

of microbial activity, such as measurements through multi-omics outputs, can allow for better708

modeling of functional microbial dynamics. Future studies balancing both the plant and microbe709

perspectives can further facilitate the empirical–theoretical feedback loop when studying the two710

missing components of plant–soil microbe interactions.711

In summary, we conclude that studying the temporal dimension and the multiple demo-712

graphic consequences of plant–soil microbe interactions provides a better understanding of their713

natural context. In addition to the maintenance of plant diversity, the two knowledge gaps can714

also be important for other ecological processes (e.g., recovery following disturbance and gap715

dynamics). The temporal dimensions highlighted here also underline the significance of phe-716

nological mismatch among plants and soil microbes driven by climate change (Rudgers et al.,717

2020; e.g., late-germinating plants may be more vulnerable to pathogens). Recognizing that soil718

conditioning and plant response are temporally varying processes also provides insights into the719

context-dependency of plant-soil microbe interactions: shifts in the abiotic environment can oc-720

cur throughout a plant’s lifetime, and the timing of these shifts can alter the temporal trajectory721

differently. Ultimately, knowledge of the system’s natural history should guide researchers to722

recognize which aspects of the temporal and demographic components are important for the fo-723

cal system and the research question. With the most critical aspect being identified, we believe724

that parameterizing new demographic models provides an avenue to predict the long-term con-725

sequences of plant–soil microbe interactions against a backdrop of real-world conditions in which726
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these interactions unfold.727
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Boxes728

Box 1: Implementing a patch occupancy model to study the temporal decay of

microbial effects

Here, we demonstrate how the temporal decay of microbial effects can be studied with

a multi-species patch occupancy model. We considered three different plant–soil microbe

states (Box Fig. 1A): unconditioned soil (P00), soils colonized and conditioned by plant i (Pii),

and uncolonized soils with a microbial legacy (P0i). The transition among these different

states can be described as follows (see also Ke and Levine, 2021 and Miller and Allesina,

2021):

dP00
dt

=

decay of conditioning
effect in empty patches︷ ︸︸ ︷

N∑
i=1

diP0i −

plant establishment into empty
and unconditioned patches︷ ︸︸ ︷

N∑
i=1

riPiiP00 (1)

dPii

dt
=

plant establishment into empty
and unconditioned patches︷ ︸︸ ︷

riPiiP00 +

plant establishment in empty
but conditioned patches︷ ︸︸ ︷

N∑
j=1

riσijPiiP0j −
plant mortality︷ ︸︸ ︷

miPii (2)

dP0i

dt
=

plant mortality︷ ︸︸ ︷
miPii −

decay of conditioning
effect in empty patches︷ ︸︸ ︷

diP0i −

plant establishment in empty
but conditioned patches .︷ ︸︸ ︷

N∑
j=1

rjσjiPjjP0i (3)

Specifically, state transitions occur due to plant colonization/soil conditioning (ri), plant

mortality (mi), and the decay of microbial effects (di, black arrows in Box Fig. 1A). Here,

soil microbes affect the ability of plants to recolonize conditioned soils (red arrows in Box

Fig. 1A). N represents the total number of species within the community.

To illustrate the consequences of variable decay rates of microbial effects, we simulated the

microbial effects (σij) for 16 plant species with data from Teste et al., 2017, which measured

soil microbial effects on plant biomass accumulation. We randomly drew species’ fecundity

(ri) from a uniform distribution between 0.2 to 0.25. This simulation illustrates how the

decay rates of microbial effects determine the overall consequences of soil microbes on

plant communities (Box Fig. ??B & C). Specifically, with this parameterization and when

microbial effects persist after host death (i.e., low di; left panels in Box Fig. 1B & C), plant–

soil microbe interactions mostly result in the dominance of a single species, overwhelming
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Box 1 (continued)

species’ variation in fecundity. However, if the conditioned microbial effect decayed rapidly

after the death of host plants (i.e., high di; right panels in Box Fig. 1B & C), variation in

species’ fecundity allowed higher diversity in each simulation and more equal persistence

probability across species. Therefore, predicting the consequences of plant–soil microbe

interactions in nature also requires quantifying the decay rate of greenhouse-measured

microbial effects.
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731

Box 2: Implementing a demographic model to detect the most critical microbial

effect

Here, we demonstrate how situating microbial effects within a demographic model of plant

population dynamics can help integrate multiple microbial effects and identify the most

critical one. We modified the model from Uricchio et al. (2019) to describe the competition

between an annual plant (Na) and a perennial plant with two stages, denoted as Np and Ap

for its seed and adult abundance, respectively:

Na(t + 1) =

survival of
ungerminated seeds︷ ︸︸ ︷

sa (1 − ga)Na(t) +

seed production︷ ︸︸ ︷
Na(t)

gaλa

1 + αapAp(t) + αaagaNa(t)
(1)

Np(t + 1) =

survival of
ungerminated seeds︷ ︸︸ ︷

sp (1 − gp)Np(t) +

seed production by adult plants︷ ︸︸ ︷
Ap(t)

λp

1 + αppAp(t) + αpagaNa(t)
(2)

Ap(t + 1) =

survival of
existing adults︷ ︸︸ ︷

Ap(t)ξ +

maturation of seeds into adult plants︷ ︸︸ ︷
Np(t)

gpv

1 + βp,ApAp(t) + βp,NpgpNp(t) + βp,NagaNa(t)
(3)

The seed dynamics of both life history types are similar to that in the Beverton–Holt model,

with a seed bank term influenced by germination (gi, i = a or p) and survival (si) as well as a

seed production term (λi) that is discounted by competition (αij). The perennial plant differs

from the annual in that its seed production (second term in equation 2) depends on the adult

stage. The maturation of perennial seeds to adulthood (second term in equation 3) depends

on the survival probability (v) and competition (βp,j , j = Ap, Np, and Na) from individuals

of all stages. Finally, perennial adults suffer mortality in a competition-independent manner

such that the proportion surviving after each year is ξ.

For the perennial plant, there are five demographic parameters that can be affected by

soil microbes (gp, sp, λp, v, and ξ). As demonstrated in section II., the first strength of a

demographic model is that it can integrate multiple microbial effects. For example, if soil

pathogens decreased all parameters of the perennial plant by 20%, the model suggests that

it would nearly be outcompeted by the annual plant (i.e., from grey to blue dashed line). By

only quantifying the impact of pathogens on the intrinsic fecundity (λp), as is commonly done

in studies that grow individual plants in conditioned soils, we would have underestimated
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Box 2 (continued)

the impacts of soil microbes in this system. The second strength of a demographic model is

that it helps identify the most critical microbial effect. For example, sensitivity analysis (see

Box figure legend for details) revealed that, compared to other demographic parameters,

the impact of pathogens on adult survival probability (ξ) had the strongest impact on the

perennial plant population.
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Figure 1 Temporal dimensions of plant–soil microbe interactions throughout the re-
peated process of plant establishment, growth, death, and recolonization by another
individual. (A) The common assumptions of plant–soil microbe interactions implied
by the design of classic experiments: microbial communities develop relatively quickly,
with resulting microbial effects that are constant throughout different plant life stages
and remain as long-lasting legacies after plant senescence to impact the next genera-
tion. (B) The dynamic plant–soil microbe interaction perspective highlighted in our
review: microbial communities change continuously throughout the conditioning pro-
cess, with impacts on plant performance that depend on both the duration of plant
conditioning and response (subsection III.1). Moreover, microbial communities and
their impacts on plant performance may diminish with time after the senescence of
the previous conditioning individual (subsection III.2) or undergo different trajectories
depending on the previous rounds of conditioning (mentioned as a future direction in
subsection III.3).
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Figure 2 An example demonstrating how incorporating the temporal and demo-
graphic aspects of plant–soil microbe interactions can generate different competitive
outcomes in the annual plant model. (A) A graphical representation of the Beverton–
Holt annual plant model, which tracks the density of seeds prior to germination.
Demographic processes influenced by soil microbes in this simulation are highlighted
in red, including seed survival and the fecundity of germinated plants. (B) Abundance
time series of N1 (solid line) and N2 (dashed line) under different microbial effect
scenarios: no pathogenic effect (grey), pathogens decrease the seed survival of N1 (s1;
blue), and pathogens decrease the fecundity of N1 (λ1; orange). The left panel assumes
a 10% decrease in N1’s demographic parameters, whereas the right panel assumes that
the initial 10% decrease after one generation aggravates to a 80% decrease after eight
generations (i.e., 10% decrease after every generation). Note that the blue lines often
overlap the grey lines due to the minor impact of s1. Parameters are obtained from the
species pair Festuca microstachys (N1) versus Hordeum murinum (N2) in Van Dyke et al.
(2022): g1 = 0.752, g2 = 0.667, s1 = 0.134, s2 = 0.045, λ1 = 2129.950, λ2 = 736.667,
α11 = 0.588, α12 = 1.411, α21 = 0.109, and α22 = 0.948.
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Figure 3 A summary of the experimental duration and life history information of the
study species in the Crawford et al. (2019) and Yan et al. (2022) data sets. Since the
two studies focused on the pairwise plant–soil feedback, we compiled information on
plant life history and categorized each pairwise comparison as different “pair types”:
annual (both plants are annuals; orange), perennial (both plants are perennials; green),
or annual–perennial (match of an annual versus a perennial; blue). Highlighted points
represent studies that evaluated plant–soil feedback between annual and perennial
plants, with each pie chart representing the percentage of different pair types within the
study (translucent points indicate studies that included only annual or only perennial
species). The position of each pie chart indicates the duration of a study’s conditioning
(x-axis; field-conditioned soil as a separate category) and response phase (y-axis).
The upper and right stacked histograms depict the same information but are based
on the number of experimental pairs across all studies. Note that one study with a
conditioning length of 48 months and a response length of 32 months (Kulmatiski,
2019) was excluded from the figure to improve visualization (see supplementary data).
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Figure 4 Experiments for studying plant–soil microbe interactions. (A) The clas-
sic two-phase experimental design, consisting of a conditioning phase during which
plants modify the soil microbial community and a response phase during which plants
respond to the soil modification. Depicted here in the response phase is the case of neg-
ative frequency-dependent feedback where conditioned soils favor the performance of
heterospecifics over conspecifics. (B) Proposed experimental designs to study the var-
ious temporal dimensions in the main text (measuring the orange plant’s performance
in soils conditioned by the blue plant as an example): (i) isolating changes in the
soil microbial community by varying the duration of soil conditioning, (ii) sequential
harvesting with both conditioning effect and plant age advancing simultaneously, (iii)
isolating the decay process by incorporating a time lag after soil conditioning, and (iv)
isolating changes in plant physiology by transplanting individuals of different age in
the same conditioned soil.
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Figure 5 Conceptual diagram depicting multiple demographic consequences of soil
microbes, with a particular focus on early plant life stages following most empirical
studies. The inner circle (black arrows) indicates the distinct demographic processes
that can be affected by soil microbes; in the main text, we highlight empirical evidence
on seed mortality, germination, and early seedling survival. The outer circle (grey
dashed arrows) indicates the life stages included in different studies on conspecific
negative density dependence (CNDD).
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Box Figure 1 An example demonstrating how the temporal decay of microbial effects
can be studied with a patch occupancy model. (A) Transitions among different plant-
soil microbe states occur due to plant colonization/conditioning, plant death, and the
decay of microbial effects. Here, soil microbes affect the ability of plants to recolonize
conditioned soil (red arrows). (B & C) Diversity of the plant community when microbial
effects decay slowly (di = 0.01; left panels) or rapidly (di = 0.99; right panels). We
simulated the dynamics of 16 plant species (depicted with different colors and letters).
We ran 100 simulations; each time we randomly generated a new fecundity value
for each species (i.e., ri ∼ U (0.2, 0.25)) while fixing the microbial effect parameters
based on data from Teste et al. (2017). Panel (B) shows a representative time series
of the relative abundance of different plant species (frequencies of empty patches are
omitted). Panel (C) shows the number of times (out of 100 simulations) the focal
species (x-axis; different species labeled with different capitalized letters) persisted in
the final community. Mortality (mi) is set to 0.05 for all plants and initial conditions
are: P00 = 0.2, Pii = 0.05 for i = 1 . . . 16, and P0i = 0.0. See Box 1 for additional
details.
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Box Figure 2 Detecting the most critical microbial effect within an annual–perennial
plant competition model (modified from Uricchio et al., 2019). Here, soil microbes
can impact five demographic parameters of the perennial plant: seed germination
rate (gp), seed survival rate (sp), intrinsic fecundity (λp), seedling survival rate (v) and
adult survival rate (ξ). The grey dashed line represents the relative abundance of
the perennial plant in the absence of any pathogenic effects from the microbes (i.e.,
unperturbed baseline parameters), while the dashed blue line shows the perennial’s
relative abundance when the pathogen simultaneously causes a 20% reduction in all
five parameters. To evaluate the demographic consequences of microbes primarily
impacting one demographic process, we sequentially decreased the value of each pa-
rameter by 20%, while the other four non-focal parameters were randomly decreased
by 0% to 5% (assuming weaker microbial impact). For each focal parameter, we re-
peated this process in 100 simulations (translucent grey points; red points and error
bars represent the means and standard deviations) and ran each simulation for 200
generations. These simulations reveal that soil pathogens that primarily reduce adult
survival (ξ) have substantially stronger demographic consequences than pathogens
that primarily affect other demographic processes. See Box 2 for model description.
The baseline parameters are obtained from the species pair Elymus glaucus (our peren-
nial) versus Bromus diandrus (our annual) in Uricchio et al. (2019) – perennial plant
parameter: gp = 0.125, sp = 0.515, λp = 282.127, ξ = 0.920, v = 0.292; annual plant
parameters: ga = 0.168, sa = 0.443, λa = 47.594; competition reduction on seed pro-
duction: αaa = 0.066, αap = 0.143, αpp = 0.018, αpa = 0.104; competition reduction on
perennial survival: βp,Np = 0.086, βp,Ap = 0.063, βp,Na = 0.002.

39



Acknowledgments734

We thank Xinyi Yan for contributing to the dataset used for Figure 3 and for insightful comments735

that improved the manuscript. We thank Lawrence Uricchio and Erin Mordecai for help with the736

model and parameter estimates used in Box Figure 2. We thank Chia-Hao Chang-Yang, Y. Anny737

Chung, Hengxing Zou, Ching-Lin Huang, Yu-Pei Tseng, Yi Sun, and Shuo Wei for their discussions.738

P.-J. Ke and J.W. are funded by the Taiwan Ministry of Education Yushan Fellow Program (MOE-739

110-YSFAG-0003-001-P1) and the Taiwan Ministry of Science and Technology (MOST 111-2621-B-740

002-001-MY3 and NSTC 113-2811-B-002-118). J.W. is also supported by NTU postdoctoral grant741

112L4000-1. G.S. Kandlikar, M. Krishnadas, and P.-J. Ke acknowledge support from sDiv, the742

Synthesis Centre of iDiv (DFG FZT 118, 202548816).743

Author Contributions744

P.-J. Ke, G.S. Kandlikar, and S.X. Ou conceived the study and took the lead in writing the first draft.745

All authors contributed critically to developing the ideas and finalizing the manuscript.746

Data Availability747

The dataset used in Figure 3 and code used to generate model simulations are available on GitHub748

(https://github.com/pojuke/DemographicReviewPSF) and will be made available on Zenodo749

with a DOI upon publication. Figures 1, 2A, 5, and Box Figure 1A are created with BioRender.com.750

751

40



References752

Augspurger, C. K., 1984. Seedling survival of tropical tree species: interactions of dispersal753

distance, light-gaps, and pathogens. Ecology 65:1705–1712.754

Bagchi, R., R. E. Gallery, S. Gripenberg, S. J. Gurr, L. Narayan, C. E. Addis, R. P. Freckleton, and O. T.755

Lewis, 2014. Pathogens and insect herbivores drive rainforest plant diversity and composition.756

Nature 506:85–88.757

Bagchi, R., T. Swinfield, R. E. Gallery, O. T. Lewis, S. Gripenberg, L. Narayan, and R. P. Freckle-758

ton, 2010. Testing the Janzen-Connell mechanism: pathogens cause overcompensating density759

dependence in a tropical tree. Ecology Letters 13:1262–1269.760

Barret, M., M. Briand, S. Bonneau, A. Préveaux, S. Valière, O. Bouchez, G. Hunault, P. Simoneau,761

and M. A. Jacquesa, 2015. Emergence shapes the structure of the seed microbiota. Applied and762

Environmental Microbiology 81:1257–1266.763

Bauer, J. T., K. M. L. Mack, and J. D. Bever, 2015. Plant–soil feedbacks as drivers of succession:764

evidence from remnant and restored tallgrass prairies. Ecosphere 6:art158.765

Bell, T., R. P. Freckleton, and O. T. Lewis, 2006. Plant pathogens drive density-dependent seedling766

mortality in a tropical tree. Ecology Letters 9:569–574.767

Bennett, J. A., J. Franklin, and J. Karst, 2023. Plant-soil feedbacks persist following tree death,768

reducing survival and growth of populus tremuloides seedlings. Plant and Soil 485:103–115.769

Bennett, J. A., H. Maherali, K. O. Reinhart, Y. Lekberg, M. M. Hart, and J. Klironomos, 2017. Plant-770

soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science771

355:181–184.772

Bever, J. D., 1994. Feeback between plants and their soil communities in an old field community.773

Ecology 75:1965–1977.774

Bever, J. D., 2003. Soil community feedback and the coexistence of competitors: conceptual775

frameworks and empirical tests. New Phytologist 157:465–473.776

41



Bever, J. D., I. A. Dickie, E. Facelli, J. M. Facelli, J. Klironomos, M. Moora, M. C. Rillig, W. D.777

Stock, M. Tibbett, and M. Zobel, 2010. Rooting theories of plant community ecology in microbial778

interactions. Trends in Ecology & Evolution 25:468–478.779

Bever, J. D., S. A. Mangan, and H. M. Alexander, 2015. Maintenance of plant species diversity by780

pathogens. Annual Review of Ecology, Evolution, and Systematics 46:305–325.781

Bever, J. D., T. G. Platt, and E. R. Morton, 2012. Microbial population and community dynamics on782

plant roots and their feedbacks on plant communities. Annual Review of Microbiology 66:265–283.783

Bever, J. D., K. M. Westover, and J. Antonovics, 1997. Incorporating the soil community into plant784

population dynamics: The utility of the feedback approach. Journal of Ecology 85:561–573.785

Bezemer, T. M., J. Jing, J. M. T. Bakx-Schotman, and E.-J. Bĳleveld, 2018. Plant competition alters786

the temporal dynamics of plant–soil feedbacks. Journal of Ecology 106:2287–2300.787

Bingham, M. A. and S. W. Simard, 2011. Do mycorrhizal network benefits to survival and growth of788

interior douglas-fir seedlings increase with soil moisture stress? Ecology and Evolution 1:306–316.789

Bittleston, L. S., Z. B. Freedman, J. R. Bernardin, J. J. Grothjan, E. B. Young, S. Record, B. Baiser,790

and S. M. Gray, 2021. Exploring microbiome functional dynamics through space and time with791

trait-based theory. mSystems 6:10–1128.792

Bonanomi, G., V. Antignani, M. Capodilupo, and F. Scala, 2010. Identifying the characteristics of793

organic soil amendments that suppress soilborne plant diseases. Soil Biology and Biochemistry794

42:136–144.795

Bottini, R., F. Cassán, and P. Piccoli, 2004. Gibberellin production by bacteria and its involvement796

in plant growth promotion and yield increase. Applied Microbiology and Biotechnology 65:497–503.797

Brinkman, E. P., W. H. van der Putten, E.-j. Bakker, and K. J. F. Verhoeven, 2010. Plant–soil feedback:798

experimental approaches, statistical analyses and ecological interpretations. Journal of Ecology799

98:1063–1073.800

Bulgarelli, D., K. Schlaeppi, S. Spaepen, E. V. L. Van Themaat, and P. Schulze-Lefert, 2013. Structure801

and functions of the bacterial microbiota of plants. Annual Review of Plant Biology 64:807–838.802

42



Callaway, R. M., G. C. Thelen, A. Rodriguez, and W. E. Holben, 2004. Soil biota and exotic plant803

invasion. Nature 427:731–733.804

Cardinaux, A., S. P. Hart, and J. M. Alexander, 2018. Do soil biota influence the outcome of novel805

interactions between plant competitors? Journal of Ecology 106:1853–1863.806

Carini, P., P. J. Marsden, J. W. Leff, E. E. Morgan, M. S. Strickland, and N. Fierer, 2016. Relic DNA807

is abundant in soil and obscures estimates of soil microbial diversity. Nature Microbiology 2:1–6.808

Chang-Yang, C.-H., J. Needham, C.-L. Lu, C.-F. Hsieh, I.-F. Sun, and S. M. McMahon, 2021. Clos-809

ing the life cycle of forest trees: The difficult dynamics of seedling-to-sapling transitions in a810

subtropical rainforest. Journal of Ecology 109:2705–2716.811

Chaparro, J. M., D. V. Badri, and J. M. Vivanco, 2013. Rhizosphere microbiome assemblage is812

affected by plant development. The ISME Journal 8:790–803.813

Chen, L., N. G. Swenson, N. Ji, X. Mi, H. Ren, L. Guo, and K. Ma, 2019. Differential soil fungus814

accumulation and density dependence of trees in a subtropical forest. Science 366:124–128.815

Chu, C. and P. B. Adler, 2015. Large niche differences emerge at the recruitment stage to stabilize816

grassland coexistence. Ecological Monographs 85:373–392.817

Chung, Y. A., 2023. The temporal and spatial dimensions of plant–soil feedbacks. New Phytologist818

237:2012–2019.819

Chung, Y. A., T. A. Monaco, J. B. Taylor, and P. B. Adler, 2023. Do plant–soil feedbacks promote820

coexistence in a sagebrush steppe? Ecology 104:e4056.821

Chung, Y. A. and J. A. Rudgers, 2016. Plant–soil feedbacks promote negative frequency dependence822

in the coexistence of two aridland grasses. Proceedings of the Royal Society B 283:20160608.823

Clark, C., J. Poulsen, D. Levey, and C. Osenberg, 2007. Are plant populations seed limited? A824

critique and meta-analysis of seed addition experiments. The American Naturalist 170:128–142.825

Comita, L. S., H. C. Muller-Landau, S. Aguilar, and S. P. Hubbell, 2010. Asymmetric density826

dependence shapes species abundances in a tropical tree community. Science 329:330–332.827

43



Connell, J., 1971. On the role of natural enemies in preventing competitive exclusion in some828

marine animals and in rain forest trees. In P. Den Boer and G. Gradwell, editors, Dynamics of829

Populations, pages 298–312. Centre for Agricultural Publishing and Documentation, Wageningen,830

The Netherlands.831

Crawford, K. M., J. T. Bauer, L. S. Comita, M. B. Eppinga, D. J. Johnson, S. A. Mangan, S. A.832

Queenborough, A. E. Strand, K. N. Suding, J. Umbanhowar, et al., 2019. When and where plant-833

soil feedback may promote plant coexistence: a meta-analysis. Ecology Letters 22:1274–1284.834

Dalling, J. W., M. Swaine, and N. C. Garwood, 1998. Dispersal patterns and seed bank dynamics835

of pioneer trees in moist tropical forest. Ecology 79:564–578.836

Das, A. J., N. L. Stephenson, and K. P. Davis, 2016. Why do trees die? characterizing the drivers of837

background tree mortality. Ecology 97:2616–2627.838

David, A. S., P. F. Quintana-Ascencio, E. S. Menges, K. B. Thapa-Magar, M. E. Afkhami, and C. A.839

Searcy, 2019. Soil microbiomes underlie population persistence of an endangered plant species.840

The American Naturalist 194:488–494.841

Day, N. J., K. E. Dunfield, and P. M. Antunes, 2015. Temporal dynamics of plant–soil feedback and842

root-associated fungal communities over 100 years of invasion by a non-native plant. Journal of843

Ecology 103:1557–1569.844

Diez, J. M., I. Dickie, G. Edwards, P. E. Hulme, J. J. Sullivan, and R. P. Duncan, 2010. Negative soil845

feedbacks accumulate over time for non-native plant species. Ecology Letters 13:803–809.846

Dombrowski, N., K. Schlaeppi, M. T. Agler, S. Hacquard, E. Kemen, R. Garrido-Oter, J. Wunder,847

G. Coupland, and P. Schulze-Lefert, 2016. Root microbiota dynamics of perennial Arabis alpina848

are dependent on soil residence time but independent of flowering time. The ISME Journal849

11:43–55.850

Dostál, P., 2021. The temporal development of plant-soil feedback is contingent on competition851

and nutrient availability contexts. Oecologia 196:185–194.852

Dostál, P., J. Müllerová, P. Pyšek, J. Pergl, and T. Klinerová, 2013. The impact of an invasive plant853

changes over time. Ecology Letters 16:1277–1284.854

44



Dostálek, T., J. Knappová, and Z. Münzbergová, 2022. The role of plant–soil feedback in long-term855

species coexistence cannot be predicted from its effects on plant performance. Annals of Botany856

130:535–546.857

Dudenhöffer, J.-H., A. Ebeling, A.-M. Klein, and C. Wagg, 2018. Beyond biomass: Soil feedbacks858

are transient over plant life stages and alter fitness. Journal of Ecology 106:230–241.859

Dudenhöffer, J.-H., N. C. Luecke, and K. M. Crawford, 2022. Changes in precipitation patterns860

can destabilize plant species coexistence via changes in plant–soil feedback. Nature Ecology &861

Evolution 6:546–554.862

Edwards, J. A., C. M. Santos-Medellín, Z. S. Liechty, B. Nguyen, E. Lurie, S. Eason, G. Phillips, and863

V. Sundaresan, 2018. Compositional shifts in root-associated bacterial and archaeal microbiota864

track the plant life cycle in field-grown rice. PLOS Biology 16:e2003862.865

Eldridge, D. J., S. K. Travers, J. Val, J. Ding, J.-T. Wang, B. K. Singh, and M. Delgado-Baquerizo,866

2021. Experimental evidence of strong relationships between soil microbial communities and867

plant germination. Journal of Ecology 109:2488–2498.868

Eppinga, M. B., M. Baudena, D. J. Johnson, J. Jiang, K. M. L. Mack, A. E. Strand, and J. D. Bever,869

2018. Frequency-dependent feedback constrains plant community coexistence. Nature Ecology870

& Evolution 2:1403–1407.871

Esch, C. M. and R. K. Kobe, 2021. Short-lived legacies of Prunus serotina plant–soil feedbacks.872

Oecologia 196:529–538.873

Esch, C. M., C. M. Medina-Mora, R. K. Kobe, and M. L. Sakalidis, 2021. Oomycetes associated with874

Prunus serotina persist in soil after tree harvest. Fungal Ecology 53:101094.875

Fanin, N., D. Lin, G. T. Freschet, A. D. Keiser, L. Augusto, D. A. Wardle, and G. F. Veen, 2021.876

Home-field advantage of litter decomposition: from the phyllosphere to the soil. New Phytologist877

231:1353–1358.878

Forero, L. E., A. Kulmatiski, J. Grenzer, and J. M. Norton, 2021. Plant-soil feedbacks help explain879

biodiversity-productivity relationships. Communications Biology 4:789.880

45



Fukami, T. and M. Nakajima, 2013. Complex plant–soil interactions enhance plant species diversity881

by delaying community convergence. Journal of Ecology 101:316–324.882

Gallery, R. E., D. J. Moore, and J. W. Dalling, 2010. Interspecific variation in susceptibility to883

fungal pathogens in seeds of 10 tree species in the neotropical genus Cecropia. Journal of Ecology884

98:147–155.885

Gao, C., L. Montoya, L. Xu, M. Madera, J. Hollingsworth, E. Purdom, R. B. Hutmacher, J. A.886

Dahlberg, D. Coleman-Derr, P. G. Lemaux, et al., 2019. Strong succession in arbuscular mycor-887

rhizal fungal communities. The ISME journal 13:214–226.888

Gilbert, G. S., 2002. Evolutionary ecology of plant diseases in natural ecosystems. Annual Review889

of Phytopathology 40:13–43.890

Grove, S., I. M. Parker, and K. A. Haubensak, 2015. Persistence of a soil legacy following removal891

of a nitrogen-fixing invader. Biological Invasions 17:2621–2631.892

Gundale, M. J. and P. Kardol, 2021. Multi-dimensionality as a path forward in plant-soil feedback893

research. Journal of Ecology 109:3446–3465.894

Hannula, S. E., R. Heinen, M. Huberty, K. Steinauer, J. R. De Long, R. Jongen, and T. M. Bezemer,895

2021. Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nature896

Communications 12:5686.897

Hannula, S. E., A. M. Kielak, K. Steinauer, M. Huberty, R. Jongen, J. R. De Long, R. Heinen, and898

T. M. Bezemer, 2019. Time after time: temporal variation in the effects of grass and forb species899

on soil bacterial and fungal communities. MBio 10:10–1128.900

Harms, K. E., S. J. Wright, O. Calderón, A. Hernandez, and E. A. Herre, 2000. Pervasive density-901

dependent recruitment enhances seedling diversity in a tropical forest. Nature 404:493–495.902

Harper, J. L., 1977. Population biology of plants. Academic Press.903

Hawkes, C. V., S. N. Kivlin, J. Du, and V. T. Eviner, 2013. The temporal development and additivity904

of plant-soil feedback in perennial grasses. Plant and Soil 369:141–150.905

46



Herrera Paredes, S. and S. L. Lebeis, 2016. Giving back to the community: microbial mechanisms906

of plant–soil interactions. Functional Ecology 30:1043–1052.907

Horton, T. and M. van der Heĳden, 2008. The role of symbioses in seedling establishment and908

survival. Seedling Ecology and Evolution pages 189–214.909

Howard, M. M., J. Kao-Kniffin, and A. Kessler, 2020. Shifts in plant–microbe interactions over com-910

munity succession and their effects on plant resistance to herbivores. New Phytologist 226:1144–911

1157.912

Huang, L.-F., L.-X. Song, X.-J. Xia, W.-H. Mao, K. Shi, Y.-H. Zhou, and J.-Q. Yu, 2013. Plant-soil913

feedbacks and soil sickness: from mechanisms to application in agriculture. Journal of Chemical914

Ecology 39:232–242.915

Huberty, M., K. Steinauer, R. Heinen, R. Jongen, S. E. Hannula, Y. H. Choi, and T. M. Bezemer,916

2022. Temporal changes in plant–soil feedback effects on microbial networks, leaf metabolomics917

and plant–insect interactions. Journal of Ecology 110:1328–1343.918

Igwe, A. N., B. Quasem, N. Liu, and R. L. Vannette, 2021. Plant phenology influences rhizosphere919

microbial community and is accelerated by serpentine microorganisms in Plantago erecta. FEMS920

Microbiology Ecology 97:85.921

Ishaq, S. L., 2017. Plant-microbial interactions in agriculture and the use of farming systems to922

improve diversity and productivity. AIMS Microbiology 3:335.923

Janzen, D. H., 1970. Herbivores and the number of tree species in tropical forests. The American924

Naturalist 104:501–528.925

Jiang, J., K. C. Abbott, M. Baudena, M. B. Eppinga, J. A. Umbanhowar, and J. D. Bever, 2020.926

Pathogens and mutualists as joint drivers of host species coexistence and turnover: implications927

for plant competition and succession. The American Naturalist 195:591–602.928

Johansen, A. and E. S. Jensen, 1996. Transfer of N and P from intact or decomposing roots of929

pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biology and Biochemistry930

28:73–81.931

47



Kalske, A., J. D. Blande, and S. Ramula, 2022. Soil microbiota explain differences in herbivore932

resistance between native and invasive populations of a perennial herb. Journal of Ecology933

110:2649–2660.934

Kandlikar, G. S., 2024. Quantifying soil microbial effects on plant species coexistence: A conceptual935

synthesis. American Journal of Botany 111:e16316.936

Kandlikar, G. S., C. A. Johnson, X. Yan, N. J. Kraft, and J. M. Levine, 2019. Winning and losing with937

microbes: how microbially mediated fitness differences influence plant diversity. Ecology Letters938

22:1178–1191.939

Kandlikar, G. S., X. Yan, J. M. Levine, and N. J. Kraft, 2021. Soil microbes generate stronger940

fitness differences than stabilization among california annual plants. The American Naturalist941

197:E30–E39.942

Kardol, P., M. T. Bezemer, and W. H. van der Putten, 2006. Temporal variation in plant–soil feedback943

controls succession. Ecology Letters 9:1080–1088.944

Kardol, P., G. B. De Deyn, E. Laliberté, P. Mariotte, and C. V. Hawkes, 2013. Biotic plant–soil945

feedbacks across temporal scales. Journal of Ecology 101:309–315.946

Kazan, K. and R. Lyons, 2016. The link between flowering time and stress tolerance. Journal of947

Experimental Botany 67:47–60.948

Ke, P.-J. and J. M. Levine, 2021. The temporal dimension of plant–soil microbe interactions:949

mechanisms promoting feedback between generations. The American Naturalist 198:E80–E94.950

Ke, P.-J. and T. Miki, 2015. Incorporating the soil environment and microbial community into plant951

competition theory. Frontiers in Microbiology 6:1066.952

Ke, P.-J., T. Miki, and T. Ding, 2015. The soil microbial community predicts the importance of plant953

traits in plant–soil feedback. New Phytologist 206:329–341.954

Ke, P.-J. and J. Wan, 2020. Effects of soil microbes on plant competition: a perspective from modern955

coexistence theory. Ecological Monographs 90:e01391.956

48



Ke, P.-J. and J. Wan, 2023. A general approach for quantifying microbial effects on plant competition.957

Plant and Soil 485:57–70.958

Ke, P.-J., P. C. Zee, and T. Fukami, 2021. Dynamic plant–soil microbe interactions: the neglected959

effect of soil conditioning time. New Phytologist 231:1546–1558.960

Keeler, A. M. and N. E. Rafferty, 2022. Legume germination is delayed in dry soils and in sterile961

soils devoid of microbial mutualists: Species-specific implications for upward range expansions.962

Ecology and Evolution 12:e9186.963

Keswani, C., S. P. Singh, C. García-Estrada, S. Mezaache-Aichour, T. R. Glare, R. Borriss, V. D.964

Rajput, T. M. Minkina, A. Ortiz, and E. Sansinenea, 2022. Biosynthesis and beneficial effects965

of microbial gibberellins on crops for sustainable agriculture. Journal of Applied Microbiology966

132:1597–1615.967

Kotanen, P. M., 2007. Effects of fungal seed pathogens under conspecific and heterospecific trees968

in a temperate forest. Botany 85:918–925.969

Koziol, L., P. A. Schultz, G. L. House, J. T. Bauer, E. L. Middleton, and J. D. Bever, 2018. The plant970

microbiome and native plant restoration: the example of native mycorrhizal fungi. BioScience971

68:996–1006.972

Krishnadas, M., R. Bagchi, S. Sridhara, and L. S. Comita, 2018. Weaker plant-enemy interac-973

tions decrease tree seedling diversity with edge-effects in a fragmented tropical forest. Nature974

Communications 9:1–7.975

Krishnadas, M. and L. S. Comita, 2018. Influence of soil pathogens on early regeneration success976

of tropical trees varies between forest edge and interior. Oecologia 186:259–268.977

Krishnadas, M. and S. M. Stump, 2021. Dispersal limitation and weaker stabilizing mechanisms978

mediate loss of diversity with edge effects in forest fragments. Journal of Ecology 109:2137–2151.979

Kulmatiski, A., 2019. Plant-soil feedbacks predict native but not non-native plant community980

composition: a 7-year common-garden experiment. Frontiers in Ecology and Evolution 7:326.981

49



Kulmatiski, A., K. H. Beard, and J. Heavilin, 2012. Plant–soil feedbacks provide an additional982

explanation for diversity–productivity relationships. Proceedings of the Royal Society B: Biological983

Sciences 279:3020–3026.984

Kulmatiski, A., K. H. Beard, J. M. Norton, J. E. Heavilin, L. E. Forero, and J. Grenzer, 2017. Live985

long and prosper: plant–soil feedback, lifespan, and landscape abundance covary. Ecology986

98:3063–3073.987

Lau, J. A. and J. T. Lennon, 2012. Rapid responses of soil microorganisms improve plant fitness in988

novel environments. Proceedings of the National Academy of Sciences 109:14058–14062.989

Lennon, J. T. and S. E. Jones, 2011. Microbial seed banks: the ecological and evolutionary implica-990

tions of dormancy. Nature Reviews Microbiology 9:119–130.991

Lepinay, C., Z. Vondráková, T. Dostálek, and Z. Münzbergová, 2018. Duration of the conditioning992

phase affects the results of plant–soil feedback experiments via soil chemical properties. Oecologia993

186:459–470.994

Leverett, L. D., G. F. Schieder IV, and K. Donohue, 2018. The fitness benefits of germinating later995

than neighbors. American Journal of Botany 105:20–30.996

Li, Y. M., J. P. Shaffer, B. Hall, and H. Ko, 2019. Soil-borne fungi influence seed germination and997

mortality, with implications for coexistence of desert winter annual plants. PLoS One 14:e0224417.998

Liang, M., X. Liu, G. S. Gilbert, Y. Zheng, S. Luo, F. Huang, and S. Yu, 2016. Adult trees cause999

density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic1000

soil fungi. Ecology Letters 19:1448–1456.1001

Liu, X., K. Steinauer, K. van der Veen-van Wĳk, and T. M. Bezemer, 2024. Zooming in on the1002

temporal dimensions of plant–soil feedback: Plant sensitivity and microbial dynamics. Journal1003

of Ecology .1004

Mack, K. M. and J. D. Bever, 2014. Coexistence and relative abundance in plant communities are1005

determined by feedbacks when the scale of feedback and dispersal is local. Journal of Ecology1006

102:1195–1201.1007

50



Mack, K. M., M. B. Eppinga, and J. D. Bever, 2019. Plant-soil feedbacks promote coexistence and1008

resilience in multi-species communities. PLoS One 14:e0211572.1009

Magee, L. J., J. A. LaManna, A. T. Wolf, R. W. Howe, Y. Lu, D. Valle, D. J. Smith, R. Bagchi,1010

D. Bauman, and D. J. Johnson, 2024. The unexpected influence of legacy conspecific density1011

dependence. Ecology Letters 27:e14449.1012

Mangan, S. A., S. A. Schnitzer, E. A. Herre, K. M. L. Mack, M. C. Valencia, E. I. Sanchez, and J. D.1013

Bever, 2010. Negative plant–soil feedback predicts tree-species relative abundance in a tropical1014

forest. Nature 466:752–755.1015

Miller, E. C., G. G. Perron, and C. D. Collins, 2019. Plant-driven changes in soil microbial communi-1016

ties influence seed germination through negative feedbacks. Ecology and Evolution 9:9298–9311.1017

Miller, Z. R. and S. Allesina, 2021. Metapopulations with habitat modification. Proceedings of the1018

National Academy of Sciences 118:e2109896118.1019

Miller, Z. R., P. Lechón-Alonso, and S. Allesina, 2022. No robust multispecies coexistence in a1020

canonical model of plant–soil feedbacks. Ecology Letters 25:1690–1698.1021

Minás, A., P. A. García-Parisi, H. Chludil, and M. Omacini, 2021. Endophytes shape the legacy1022

left by the above- and below-ground litter of the host affecting the establishment of a legume.1023

Functional Ecology 35:2870–2881.1024

Mordecai, E. A., 2013a. Consequences of pathogen spillover for cheatgrass-invaded grasslands:1025

coexistence, competitive exclusion, or priority effects. The American Naturalist 181:737–747.1026

Mordecai, E. A., 2013b. Despite spillover, a shared pathogen promotes native plant persistence in1027

a cheatgrass-invaded grassland. Ecology 94:2744–2753.1028

Mordecai, E. A., 2015. Pathogen impacts on plant diversity in variable environments. Oikos1029

124:414–420.1030

Mouquet, N., J. L. Moore, and M. Loreau, 2002. Plant species richness and community productivity:1031

why the mechanism that promotes coexistence matters. Ecology Letters 5:56–65.1032

51



Müller, A., E. George, and E. Gabriel-Neumann, 2013. The symbiotic recapture of nitrogen from1033

dead mycorrhizal and non-mycorrhizal roots of tomato plants. Plant and Soil 364:341–355.1034

Nagendra, U. J. and C. J. Peterson, 2016. Plant-soil feedbacks differ in intact and tornado-damaged1035

areas of the southern Appalachian mountains, USA. Plant and Soil 402:103–116.1036

Neytcheva, M. S. and L. W. Aarssen, 2008. More plant biomass results in more offspring production1037

in annuals, or does it? Oikos 117:1298–1307.1038

O’Brien, A. M., N. A. Ginnan, M. Rebolleda-Gómez, and M. R. Wagner, 2021. Microbial effects on1039

plant phenology and fitness. American Journal of Botany 108:1824–1837.1040

Orrock, J. L. and C. C. Christopher, 2010. Density of intraspecific competitors determines the1041

occurrence and benefits of accelerated germination. American Journal of Botany 97:694–699.1042

Ou, S. X., G. S. Kandlikar, M. L. Warren, and P.-J. Ke, 2024. Realistic time-lags and litter dynamics1043

alter predictions of plant–soil feedback across generations. bioRxiv pages 2024–01.1044

Pacala, S. W. and D. Tilman, 1994. Limiting similarity in mechanistic and spatial models of plant1045

competition in heterogeneous environments. The American Naturalist 143:222–257.1046

Pajares-Murgó, M., J. L. Garrido, A. J. Perea, Á. López-García, J. M. Bastida, J. Prieto-Rubio,1047

S. Lendínez, C. Azcón-Aguilar, and J. M. Alcántara, 2024. Intransitivity in plant–soil feedbacks1048

is rare but is associated with multispecies coexistence. Ecology Letters 27:e14408.1049

Peay, K. G., 2018. Timing of mutualist arrival has a greater effect on Pinus muricata seedling growth1050

than interspecific competition. Journal of Ecology 106:514–523.1051

Pepe, A., M. Giovannetti, and C. Sbrana, 2018. Lifespan and functionality of mycorrhizal fungal1052

mycelium are uncoupled from host plant lifespan. Scientific Reports 8:10235.1053

Pineda, A., I. Kaplan, S. E. Hannula, W. Ghanem, and T. M. Bezemer, 2020. Conditioning the1054

soil microbiome through plant–soil feedbacks suppresses an aboveground insect pest. New1055

Phytologist 226:595–608.1056

52



Ravanbakhsh, M., R. Sasidharan, L. A. Voesenek, G. A. Kowalchuk, and A. Jousset, 2018. Microbial1057

modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome1058

6:1–10.1059

Reinhart, K. O., J. T. Bauer, S. McCarthy-Neumann, A. S. MacDougall, J. L. Hierro, M. C. Chiuffo,1060

S. A. Mangan, J. Heinze, J. Bergmann, J. Joshi, et al., 2021. Globally, plant-soil feedbacks are1061

weak predictors of plant abundance. Ecology and Evolution 11:1756–1768.1062

Reinhart, K. O., A. A. Royo, S. A. Kageyama, and K. Clay, 2010. Canopy gaps decrease microbial1063

densities and disease risk for a shade-intolerant tree species. Acta Oecologica 36:530–536.1064

Rudgers, J. A., M. E. Afkhami, L. Bell-Dereske, Y. A. Chung, K. M. Crawford, S. N. Kivlin, M. A.1065

Mann, and M. A. Nuñez, 2020. Climate disruption of plant-microbe interactions. Annual Review1066

of Ecology, Evolution, and Systematics 51:561–586.1067

Sarmiento, C., P.-C. Zalamea, J. W. Dalling, A. S. Davis, S. M. Stump, J. M. U’Ren, and A. E.1068

Arnold, 2017. Soilborne fungi have host affinity and host-specific effects on seed germination1069

and survival in a lowland tropical forest. Proceedings of the National Academy of Sciences USA1070

114:11458–11463.1071

Schroeder, J. W., A. Dobson, S. A. Mangan, D. F. Petticord, and E. A. Herre, 2020. Mutualist and1072

pathogen traits interact to affect plant community structure in a spatially explicit model. Nature1073

Communications 11:2204.1074

Senthilnathan, A. and R. D’Andrea, 2023. Niche theory for positive plant-soil feedbacks. Ecology1075

104:e3993.1076

Shade, A., H. Peter, S. D. Allison, D. Baho, M. Berga, H. Bürgmann, D. H. Huber, S. Langenheder,1077

J. T. Lennon, J. B. Martiny, et al., 2012. Fundamentals of microbial community resistance and1078

resilience. Frontiers in Microbiology 3:417.1079

Shemesh, H., T. D. Bruns, K. G. Peay, P. G. Kennedy, and N. H. Nguyen, 2023. Changing balance1080

between dormancy and mortality determines the trajectory of ectomycorrhizal fungal spore1081

longevity over a 15-yr burial experiment. New Phytologist 238:11–15.1082

53



Shikano, I., C. Rosa, C.-W. Tan, and G. W. Felton, 2017. Tritrophic interactions: microbe-mediated1083

plant effects on insect herbivores. Annual Review of Phytopathology 55:313–331.1084

Song, X. and R. T. Corlett, 2022. Do natural enemies mediate conspecific negative distance-and1085

density-dependence of trees? a meta-analysis of exclusion experiments. Oikos 2022:e08509.1086

Stump, S. M. and L. S. Comita, 2018. Interspecific variation in conspecific negative density depen-1087

dence can make species less likely to coexist. Ecology Letters 21:1541–1551.1088

Suding, K. N., W. Stanley Harpole, T. Fukami, A. Kulmatiski, A. S. MacDougall, C. Stein, and1089

W. H. van der Putten, 2013. Consequences of plant–soil feedbacks in invasion. Journal of Ecology1090

101:298–308.1091

Swamy, V., J. Terborgh, K. G. Dexter, B. D. Best, P. Alvarez, and F. Cornejo, 2011. Are all seeds1092

equal? spatially explicit comparisons of seed fall and sapling recruitment in a tropical forest.1093

Ecology Letters 14:195–201.1094

Teste, F. P., P. Kardol, B. L. Turner, D. A. Wardle, G. Zemunik, M. Renton, and E. Laliberté, 2017.1095

Plant–soil feedback and the maintenance of diversity in Mediterranean-climate shrublands.1096

Science 355:173–176.1097

Uricchio, L. H., S. C. Daws, E. R. Spear, and E. A. Mordecai, 2019. Priority effects and nonhierar-1098

chical competition shape species composition in a complex grassland community. The American1099

Naturalist 193:213–226.1100

van de Voorde, T. F., W. H. van der Putten, and T. M. Bezemer, 2012. The importance of plant–soil1101

interactions, soil nutrients, and plant life history traits for the temporal dynamics of jacobaea1102

vulgaris in a chronosequence of old-fields. Oikos 121:1251–1262.1103

van der Putten, W. H., R. D. Bardgett, J. D. Bever, T. M. Bezemer, B. B. Casper, T. Fukami, P. Kardol,1104

J. N. Klironomos, A. Kulmatiski, J. A. Schweitzer, K. N. Suding, T. F. J. van der Voorde, and1105

D. A. Wardle, 2013. Plant–soil feedbacks : the past, the present and future challenges. Journal of1106

Ecology 101:265–276.1107

Van Dyke, M. N., J. M. Levine, and N. J. Kraft, 2022. Small rainfall changes drive substantial1108

changes in plant coexistence. Nature 611:507–511.1109

54



Veen, C., E. Fry, F. ten Hooven, P. Kardol, E. Morriën, and J. R. De Long, 2019. The role of plant1110

litter in driving plant-soil feedbacks. Frontiers in Environmental Science 7:168.1111

Veen, G. F., F. C. ten Hooven, C. Weser, and S. E. Hannula, 2021. Steering the soil microbiome by1112

repeated litter addition. Journal of Ecology 109:2499–2513.1113

Wagner, M. R., D. S. Lundberg, D. Coleman-Derr, S. G. Tringe, J. L. Dangl, and T. Mitchell-Olds,1114

2014. Natural soil microbes alter flowering phenology and the intensity of selection on flowering1115

time in a wild arabidopsis relative. Ecology Letters 17:717–726.1116

Wubs, E. R. J. and T. M. Bezemer, 2018. Temporal carry-over effects in sequential plant–soil1117

feedbacks. Oikos 127:220–229.1118

Wubs, E. R. J., W. H. van der Putten, M. Bosch, and T. M. Bezemer, 2016. Soil inoculation steers1119

restoration of terrestrial ecosystems. Nature Plants 2:16107.1120

Yan, X., J. M. Levine, and G. S. Kandlikar, 2022. A quantitative synthesis of soil microbial effects1121

on plant species coexistence. Proceedings of the National Academy of Sciences 119:e2122088119.1122

Younginger, B. S., D. Sirová, M. B. Cruzan, and D. J. Ballhorn, 2017. Is biomass a reliable estimate1123

of plant fitness? Applications in plant sciences 5:1600094.1124

Zalamea, P.-C., C. Sarmiento, A. E. Arnold, A. S. Davis, A. Ferrer, and J. W. Dalling, 2021. Closely1125

related tree species support distinct communities of seed-associated fungi in a lowland tropical1126

forest. Journal of Ecology 109:1858–1872.1127

Zee, P. C. and T. Fukami, 2015. Complex organism–environment feedbacks buffer species diversity1128

against habitat fragmentation. Ecography 38:370–379.1129

Zhalnina, K., K. B. Louie, Z. Hao, N. Mansoori, U. N. Da Rocha, S. Shi, H. Cho, U. Karaoz, D. Loqué,1130

B. P. Bowen, et al., 2018. Dynamic root exudate chemistry and microbial substrate preferences1131

drive patterns in rhizosphere microbial community assembly. Nature Microbiology 3:470–480.1132

Zhu, Y., L. S. Comita, S. P. Hubbell, and K. Ma, 2015. Conspecific and phylogenetic density-1133

dependent survival differs across life stages in a tropical forest. Journal of Ecology 103:957–966.1134

55



Zhu, Y., S. Queenborough, R. Condit, S. Hubbell, K. Ma, and L. Comita, 2018. Density-dependent1135

survival varies with species life-history strategy in a tropical forest. Ecology Letters 21:506–515.1136

Zou, H.-X., X. Yan, and V. H. Rudolf, 2024. Time-dependent interaction modification generated1137

from plant–soil feedback. Ecology Letters 27:e14432.1138

56


	Abstract
	Introduction
	Significant consequences of overlooking the temporal and demographic aspects of plant–soil microbe interactions
	Dissecting different temporal dimensions of microbial effects
	Temporal development during the conditioning and response phases
	Alterations of microbial effects after plant death
	Implications for experimental design

	Assessing multiple demographic consequences of soil microbes
	Microbial regulation of seed-to-seedling transition
	Microbial effects beyond early life stages
	Implications for experimental design

	Modeling frameworks for incorporating temporal and demographic aspects of plant–soil microbe interactions
	Patch occupancy models
	Models incorporating multiple demographic processes

	Conclusion: moving forward with an empirical-theoretical feedback loop
	Acknowledgments
	References

