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A B S T R A C T

Microbes in the dark oceans are a key determinant of remineralization of sinking carbon particles. However, most marine ecosystem models overlook how microbes
aggregate on particles and the microscale interactions between particle-associated microbes, making it difficult to obtain mechanistic insights on their vertical power-
law decay pattern. Here, we present a spatial population model where the attachment and detachment processes of bacterial cells depend on local density of particle-
associated bacteria. We show that the power-law relationship can emerge when the non-random aggregated distribution of bacteria is considered without any depth-
specific environmental parameters. Furthermore, the comparison between model behavior and empirical patterns in the Pacific and Southern Ocean indicated that
temperature-dependent hydrolysis rate and nutrient-dependent sinking rate of particles are key parameters to explain the regional variations of the power-law
exponent. The mechanistic approach developed here provides a pathway to link micro-scale interactions between individuals to macro-scale food chain struc-
tures and carbon cycle.

1. Introduction

Over the last 20 years, the importance of microbial life in the dark
oceans, one of the least explored biospheres, has been increasingly
recognized. This interest exists because interactions between organic
matter and microbes in the dark oceans are responsible for the remi-
neralization of sinking particles (i.e., particulate organic carbon; POC)
into carbon dioxide (CO2), which has important consequences on global
carbon cycle (Kwon et al., 2009; Ogawa et al., 2001). Dark ocean mi-
crobes (bacteria and their predators) can be characterized by how their
abundance varied with depth (i.e., their vertical profiles from 100 to
200 m below sea surface down to the ocean floor), which has been
approximated by a power-law decay function (Sohrin et al., 2010;
Tanaka, 2009; Yang et al., 2014; Yokokawa et al., 2013).This pattern is
comparable to the well-known power-law decay of POC sinking flux
with depth (Berelson, 2012; Martin et al., 1987). Variation in the power-
law exponent of POC flux, to which atmospheric pCO2 is highly sensitive
at a global scale (Kwon et al., 2009), has been previously attributed to
ecological and physical processes (Berelson, 2012; Marsay et al., 2015;
Nguyen et al., 2022 but also see Olli, 2015; Primeau et al., 2006).
However, knowledge remains limited regarding: (1) the mechanisms
driving the power-law decay pattern of microbes, and (2) how the

power-law exponents for microbial distribution vary regionally with
environmental conditions. These limitations hinder our understanding
of the mechanisms of POC remineralization and how microbial activity
contribute to the variation in POC flux at a regional scale.

Evidence from profiles of bacterial activity (Nagata et al., 2000;
Turley and Stutt, 2000; Yamada et al., 2012) and community genomics
(Delong et al., 2006; Sunagawa et al., 2015), along with mathematical
models (Miki et al., 2009), indicates that bacterial activity on the surface
of sinking carbon particles is structured by depth. In addition, micro-
scale studies have demonstrated the prevalence of the aggregated mi-
crobial distribution on the surface of particles (Azam andMalfatti, 2007;
Stocker et al., 2008; Vadstein et al., 2012), and revealed both facilitative
and repelling interactions between particle-associated and free-living
bacteria (Grossart et al., 2003; Long and Azam, 2001). These lines of
evidence challenge the traditional formulations of bacterial populations
and consumer-resource dynamics in marine ecosystem models. In
particular, past studies have overlooked bacterial activity on particles
and assumed a simple Monod growth form in response to the concen-
tration of organic carbon (Fasham et al., 1990; Laws et al., 2000),
oversimplifying the interactions among particles, free-living bacteria,
and particle-associated bacteria (Dunne et al., 2005; Laws et al., 2000;
Miki, 2012; Miki et al., 2009; 2008; Miki and Yamamura, 2005).
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Recent models have focused on realistic aspects of particle charac-
teristics while keeping the bacterial parameterization simple, as their
aim is to quantitatively reproduce the power-law decay of POC flux. Key
mechanisms include mixtures of particles with different degradation
rate (Cael and Bisson, 2018) and depth-dependent factors such as
sinking rate, degradation rate, and particle size spectrum (Omand et al.,
2020). These mechanisms effectively reproduce the observed power-law
decay in POC flux but do not focus on bacterial abundance distribution
itself. Another line of recent models incorporates density-dependent
growth of attached bacteria, detailed dynamics of extracellular
enzyme, and depth-dependent environmental parameters. These models
are able to quantitatively explain empirical patterns with a depth-
independent sinking rate and a single type of particle (Mislan et al.,
2014) or with reduction of particle size and sinking rate along degra-
dation (Nguyen et al., 2022). Nevertheless, it should be noted that these
models try to numerically explain the empirical bacterial abundance but
do not focus on the power-law decay pattern itself.

However, it remains unclear whether microscale interactions be-
tween bacteria via chemotaxis (Stocker et al., 2008) and quorum sensing
(Gram et al., 2002; Hmelo et al., 2011) are important only for bacterial
survival and competition strategies or also for macroscale distribution of
bacterial abundance and POC flux. To bridge the gap between recent
advances in microscale studies and existing population dynamics
models, this study proposes an alternative model for the power-law
distribution that explicitly considers the microscale aggregated distri-
bution of bacteria on particles.

Although we acknowledge that various environmental parameters
are depth-dependent, e.g., temperature, water density, turbulent diffu-
sion rate, and sinking rate of particles (Mislan et al., 2014; Nguyen et al.,
2022; Omand et al., 2020) and that POC includes particles of various
sizes (Cael and Bisson, 2018; Omand et al., 2020), our primary aim is to
demonstrate that the macroscale power-law distribution can emerge
from microscale density-dependent relationships between particles,
free-living bacteria, and attached bacteria. These relationships autono-
mously change with depth, even when parameters are depth-
independent and with a single, constant particle size. Since the focal
mechanisms differ between models, our hypothesis and the findings
from the recent models (Cael and Bisson, 2018; Mislan et al., 2014;
Nguyen et al., 2022; Omand et al., 2020) are not mutually exclusive.

We also aim to link environmental parameters to model parameters
and identify key determinants of the power-law exponent of bacterial
abundance. This is done by comparing a statistical analysis of empirical
data on vertical profiles of bacterial abundance and environmental pa-
rameters collected over a large spatial scale (i.e., the central Pacific
Ocean and Southern Ocean, ranging from 67.5◦ S to 53.6◦ N) (Yang
et al., 2010; Yokokawa et al., 2013) with a sensitivity analysis of model
parameters.

To achieve these two aims, our spatial population model incorpo-
rated multiscale processes: particle state transitions at the microscale,
driven by bacterial colonization to particles; demographic dynamics at
the local scale (at each layer of the ocean), driven by particle hydrolysis
and bacterial growth; and vertical distribution patterns at the macro-
scale, driven by diffusion and sinking.

2. Material and methods

2.1. Spatial population model

Model Framework— Below, we first describe the model variable set-
tings that were used to capture the interactions between POC and bac-
teria. Then, the formulations were separately derived for: (1) the
microscale interactions between bacteria and POC (fast processes), (2)
the demographic processes of the bacterial population (slow process).
The fast and slow processes were then incorporated into the equations
that describe the temporal dynamics of bacteria and POC. Finally, ver-
tical heterogeneity driven by sinking and mixing were incorporated to

form a one-dimensional spatial dynamic model.
Model Variables—We considered a bacterial population that have

cells in two states: (1) free-living bacterial cells that are suspended in
bulk water, and (2) particle-attached bacterial cells that form aggregates
with carbon particles (POC). We developed a one-dimensional spatial
population model with depth-specific total abundance of bacteria and
POC, BT(z, t) cells/m3 and AT(z, t) particles/m3, respectively, at depth z
meters and time t. This model differed from classical formulations
(Hasumi and Nagata, 2014) and recent models (Mislan et al., 2014;
Nguyen et al., 2022) in that it explicitly incorporates non-uniform dis-
tributions of particle-attached bacterial cells among particles at each
depth by the abundance of particles, An(z, t), which are colonized by n
bacterial cells (n = 0, 1, 2, …) (Fig. 1a). The total abundance of particles
and the total number of particle-attached bacteria are calculated as AT(z,
t) =

∑+∞
n=0An(z, t), and BA(z, t) =

∑+∞
n=0nAn(z, t), respectively. Total

bacterial abundance BT(z, t) is the sum of BA and free-living bacteria,
BF(z, t) (Fig. 1b).

Microscale interactions between bacteria and POC—We assumed that
the attachment rate of a single free-living bacteria to particles (An) and
the detachment rate of a single particle-attached bacteria from An
depend on local bacterial abundance (n); these two rates are presented
as the function a(n) and d(n), respectively. Such a density-dependence
process is not considered in other models (Kiørboe et al., 2002;
Lambert et al., 2019). For each particle state (n = 0, 1, 2, …), we can
describe the dynamics of the state transition as:

dAn

dt
= a(n − 1)An− 1BF
⏟̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

An− 1→An
by attachment

− a(n)AnBF
⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟
An→An+1

by attachment

+ (n+ 1)d(n+ 1)An+1
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

An+1→An
by detachment

− nd(n)An
⏟̅̅̅̅⏞⏞̅̅̅̅⏟
An→An− 1

by detachment

.

(1)

The presence of bacteria on a particle either enhances or suppresses the
further colonization of bacteria depending on strains (Grossart et al.,
2003). The likely mechanisms for enhanced colonization include the
attraction of free-living motile bacteria to dissolve organic matter
(DOM) released from particles due to hydrolysis driven by the existing
attached bacterial cells (Stocker et al., 2008), whereas the mechanism
for suppressed colonization include the repelling of newer colonizers by
antibiotics production (Long and Azam, 2001). Since the abundance and
activity of particle-attached bacteria and particle hydrolysis rate are
positively correlated (Middelboe et al., 1995), it is likely that DOM
release from a particle and thus chemotactic activity of motile bacteria
increases with the abundance of attached bacteria on the particle. In
addition, quorum sensing, a cell-density-dependent signaling system,
may affect the colonization process (Hmelo et al., 2011). Despite
empirical evidence suggesting a positive relationship, the exact func-
tional form between the local bacterial abundance already attached to a
particle and the rate of subsequent attachment of free-living cells to the
particle remains unclear. Therefore, we first derived the model equa-
tions with a general density-dependent function a(n) and d(n) (see also
Miki & Yamamura 2005; Miki et al., 2008, 2009 for different formula-
tions). Then, we used two specific formulations a(n) for numerical cal-
culations: linear density-dependence function a0 +a1n and the nonlinear
density-dependence function a0exp(a1n), where a0 and a1 represent
density-independent and dependent attachment coefficients, respec-
tively. The linear and nonlinear formulations correspond to the case
when no further interactions between attached bacterial cells on a
particle are considered (the attractiveness via chemotaxis linearly in-
creases with bacterial abundance only) and the case when a certain
cooperative behavior is considered (Enke et al., 2018), respectively.
Similarly, two examples d0 +d1n and d0exp(d1n)were considered for the
detachment rate, which would be mediated by quorum sensing (Gram
et al., 2002) or simply as the result of competition (Mislan et al., 2014).
With d1 > 0, our formulation corresponds to the case where negative
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interactions between attached bacterial cells enhance the detachment
rate (see also Kiørboe et al., 2002 for density-independent detachment
rate, corresponding to d1 = 0 in our model, and Mislan et al., 2014 for
density-dependent detachment rate).

We assumed that the attachment and detachment processes occur
much faster than the demographic processes (Grossart et al., 2003;
Lambert et al., 2019). This assumption allowed us to incorporate
behavioral complexity of individual organisms into population models
(Auger and Poggiale, 1996). Under this assumption, at each time twhen
the total abundance of bacteria (BT) and that of particles (AT) are given,
the frequency of different states of particles (Pn(z,t) = An(z,t)/AT(z,t), n

= 0, 1, 2, …) reaches equilibrium without the influence of demographic
processes, as follows (setting dAn/dt = 0 and also see Fig. 1a and Eqs.
(A1) – (A4) in Appendix A):

Pn =
λn

n!
P0

∏n

k=1

d0a(k − 1)
a0d(k)

n ≥ 1, (2)

where a0 = a(0),d0 = d(0),λ = (a0/d0)BF. Note that this distribution is
identical to the Poisson distribution, with P0 = e− λ, when a(n) and d(n)
are density-independent constants; importantly, it deviates from the
Poisson distribution when a(n) and d(n) are density-dependent (Fig. S1).

Fig. 1. Schematic diagrams illustrating the multiscale interactions between bacteria and particles. (a) Microscale state transition: shows particles, labeled An, with
varying numbers (n = 0, 1, 2,..) of bacterial cells attached. The state of these particles changes with bacterial attachment to and detachment from them. (b) Local
scale demographic dynamics: demonstrates how, at each depth, the number of particles is subject to change due to supply from primary production and losses from
grazing and hydrolysis. Bacterial growth is driven by the consumption of hydrolyzed organic matter from particles, with mortality also influencing bacterial
abundance. (c) Macroscale vertical distribution: illustrates the distribution of particles and bacteria throughout the water column. Turbulent diffusion results in their
random movement upwards and downwards, while gravitational sinking specifically causes the downward movement of particles and attached bacteria. A successful
model is expected to demonstrate a power-law decay with depth in total bacterial abundance, characterized by an exponent (b < 0). In our model setting, z0 is the
starting depth for regression, defined as the depth where maximum bacterial abundance occurred in depth ≥ 100 m.
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With the specific linear (a(n) = a0 + a1n, d(n) = d0 + d1n) and
exponential (a(n) = a0exp(a1n), d(n) = d0exp(d1n)) density-dependent
functions, Eq. (2) is reduced to the following, respectively,

Pn = P0
λn

n!
∏n

k=1

1+

(
a1
a0

)

(k − 1)

1+

(
d1
d0

)

k
n ≥ 1, (3)

and

Pn = P0
λ̃(BF)

n

n!
exp
(
− αn2

)
n ≥ 0, (4)

where α in Eq. (4) represents the net density-dependent effect and is
given as α = (d1 − a1)/2, λ̃(BF) = (a0/d0)BFexp[− (a1 + d1)/2], and P0 is
a function of λ and α.

Demographic processes of bacteria and supply and hydrolysis processes of
POC—We assumed that the free-living cells of bacteria are produced
through the hydrolysis of particles (Fig. 1b). The hydrolysis rate of An is
given by h1n, i.e., it increases linearly with the local density n of bacteria
attached to the particle (but see Enke et al., 2018; Mislan et al., 2014;
Nguyen et al., 2022 for nonlinear formulation with interactions between
attached bacteria). Two sources of mortality were assumed for bacteria:
(1) loss of attached cells with the loss of the whole particle by the grazing
of metazoan zooplankton, and (2) loss of free-living and attached cells
by the grazing of protozoa, the rates of which are constant and given by
mA and mB, respectively. We assumed that the abundance of POC in-
creases with constant supply S0, and decreases with hydrolysis by
attached bacteria and with grazing by metazoan zooplankton. The dy-
namics of particles are given by:

dAT

dt
= S0⏟⏞⏞⏟

constant

supply

−
∑∞

n=0
h1nAn

⏟̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅⏟
particle hydrolysis

− mA

∑∞

n=0
An

⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟

density independent loss

due to metazoan zooplankt on grazing

= S0 − h1BA − mAAT ≡ fAT . (5)

The total abundance of bacteria changes with time along the following
dynamics:

dBT

dt
=qPOC⋅BGE/qB⋅

∑+∞

n=0
h1nAn

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

productionof free-livingbacteria
alongparticlehydrolysis

− mA

∑+∞

n=0
nAn

⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟

loss of attachedbacteria

alongwithparticle loss

− mB

(
∑+∞

n=0
nAn+BF

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

loss of bacteria due to grazing

= (qPOC⋅BGE/qBh1)BA − mABA − mB(BA +BF) ≡ fBT , (6)

where qPOC, qB, and BGE are the carbon biomass of a single particle, that
of a single bacterial cell, and bacterial growth efficiency, respectively.

Incorporating microscale interactions and population growth— By
combining the fast state distribution (Fig. 1a and Eq. (2)) and slow
growth processes (Fig. 1b and Eqs. (5), (6)), we created the population
dynamics model for local ecological processes (i.e., both microscale
interactions and population growth) at each depth z. We assume that BA
and BF are determined as the fast distribution when AT and BF are given.
That is:

BT = BF + BA(AT ,BF). (7)

However, it is not possible to write down BF and BA as the explicit
function of BT, so Eq. (6) cannot be closed with BT. Therefore, we must
convert Eq. (6) to the closed question of dBF/dt by using the chain rule to
Eq. (7):

dBT

dt
=
dBF

dt
+

∂BA

∂AT

dAT

dt
+

∂BA

∂BF

dBF

dt
.

Then, using Eqs. (5) and (6), we obtain,

dBF

dt
=

(

1+
∂BA

∂BF

)− 1(

fBT −
∂BA

∂AT
fAT

)

, (8)

noting that ∂BA
∂BF is always positive (Eq.(A6)) and

(

1+ ∂BA
∂BF

)− 1
is well

defined.
Using Eq. (8), Eqs. (5) and (6) are further converted into:

dAT

dt
= S0 −

(

h1
θ∞

1+ ψ∞
+mA

)

AT , (9)

dBF

dt
=

(

1+
∂BA

∂BF

)− 1

×

[
θ∞

1+ ψ∞

{

AT

(
qPOC
qB

BGE⋅h1 − mB + h1
θ∞

1+ ψ∞

)

− S0
}

− mBBF

]

,

(10)

where θ∞, φ∞, ψ∞, and ∂BA
∂BF are given in Eqs. (A8) – (A10), and (A14).

Although it would be counterintuitive for the hydrolysis rate in Eq. (5) to
linearly increase with the abundance of attached bacteria (BA) but
remain independent of particle abundance, the hydrolysis responds
linearly to AT and nonlinearly to BF (Eqn. (9)). In the special case of
density-independent attachment and detachment, it is reduced to the
well-known Michaelis-Menten type function (Eqn. (A20)).

Although we cannot explicitly derive the differential equation for BT,
we can calculate the total abundance of bacteria at any t, as BT(t) =

BF(t) + θ∞
1+ψ∞

AT(t). We regard these Eqs. (9) and (10) as the population
dynamics without vertical spatial structure (non-spatial model). In other
words, we interpret that these equations describe the local ecological
processes occurring within each layer of the ocean.

Incorporating local processes and vertical physical processes—To study the
vertical distribution of POC and bacterial abundance, we formulated a
multi-layermodel by coupling vertical physical processes (i.e., sinking and
diffusion) (Fig. 1c) with local ecological processes. Specifically, we set
depth-dependent supply rate of particles S0(z) > 0 for 0 ≤ z ≤ 50 m, and
0 for z> 50 m. Sinking and diffusion were the only the sources of particle
supply in the aphotic layers (z> 50m). In themixing layer (0≤ z≤ 50m),
the diffusion rate was fast enough to homogenize the population distri-
bution despite the depth-specific demographic processes. This is why we
assumed a single layer only for the mixing layer. In deeper layers, the
sinking rate is set as 10 m d-1 while diffusion rate is 1.0 cm2 s− 1. These are
small enough to realize the spatially heterogeneous population distribu-
tion due to the depth-specific demographic processes.

For incorporating sinking and diffusion into local ecological pro-
cesses, however, it is not possible to directly add these terms into Eqs. (9)
and (10), because particles (AT) and attached bacteria (BA) sink but free-
living bacteria (BF) do not. To explicitly consider such differences be-
tween BA and BF, we need to start modifying Eqs. (5) and (6) as

∂AT(z, t)
∂t = fAT (z, t) − s

∂AT

∂z +
∂
∂z

(

D(z)
∂AT

∂z

)

, (11)

∂BT(z, t)
∂t = fBT (z, t) − s

∂BA

∂z +
∂
∂z

(

D(z)
∂BT

∂z

)

, (12)

where s is depth-independent sinking rate and D(z) is depth-dependent
turbulent diffusion rate (but depth-dependent in the surface layer ≤

100 m depth only).
Following the derivation of Eqs. (9) and (10), our strategy to obtain

the spatial population model with local processes was to first discretize
Eqs. (11) and (12) into a set of ODEs (Eqs. (A15) and (A16) and then
appropriately convert them into the spatially-discretized equations for
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AT(z) and BF(z) (Eqs. (A18) and (A19)) using the chain rule (Eq. (A17);
similar to Eq. (8)).

Notes on some assumptions— In order to keep the model analytically
and numerically solvable while using biologically valid assumptions,
some processes and parameters were not considered in the model. Since
our primary focus is on the aphotic zone of the oceans and the popula-
tion dynamics of heterotrophic bacteria, we did not explicitly consider
the dynamics of phytoplankton in the surface oceans. Instead, their ac-
tivity was parameterized as a fixed primary production, S0. Conse-
quently, we did not account for the light spectrum and its variations with
depth (see Heggerud et al., 2023). We neglected the bacterial replication
and predation-induced mortality on each particle (Grossart et al., 2003;
Kiørboe et al., 2003; Mislan et al., 2014; Nguyen et al., 2022), explicit
hydrolysis of particles into dissolve organic carbon, and its consumption
by free-living bacteria (Miki et al., 2009; Miki and Yamamura, 2005;
Mislan et al., 2014). We did not explicitly consider microscale physical
parameters that determine the encounter rate between particles and
free-living bacteria, such as the diffusivity of randomly moving bacteria,
the radius of bacteria and particles, and the Sherwood number (Kiørboe
et al., 2002; Lambert et al., 2019; Mislan et al., 2014; Nguyen et al.,
2022). Note that these parameters determine the density-independent
attachment of bacteria in previous models, which corresponds to the
parameter a0 in our model framework. The chemotactic behavior that
increases the encounter rate of bacteria to particles is modeled as an
increase in ‘effective’ radius of particles (Lambert et al. 2019). Since we
used a single and constant a0 (and d0) value, it implies that we neglected
temporal changes in particles sizes due to gradual hydrolysis (Nguyen
et al., 2022) as well as heterogeneity in particle sizes (i.e., size spectrum)
(Omand et al., 2020).

2.2. Setting for model analysis

All of the numerical analyses and statistical analyses were conducted
using C language and R4.3.1 (TeamCore, 2018), respectively. First, we
evaluated the vertical distribution of POC flux (=s*AT(z)) and total
bacterial abundance (=BF(z)+ BA(z)) at the demographic equilibrium of
our spatial population model, where s represented the depth-
independent sinking rate of particles. In particular, we investigated
how density-dependent interactions (i.e., a1 ∕= 0 or d1 ∕= 0) affect the
emergence of power-law decay for both POC flux and total bacterial
abundance. Numerical methods for solving the differential equations are
described in the Supplementary Material (Appendix B. Numerical
methods of approximation). The default parameter values for numerical
calculations were summarized in Table S4.

To ensure efficient numerical calculations within a reasonable time
frame (i.e., within 30 h, using a Xeon Silver 4108 1.80 GHz processor
with 8 cores x 2), we first employed extremely small particle size (its
carbon content is equivalent to 100 bacterial cells; Table S4) as the
default parameter value. When choosing more realistic parameter
values, which are represented by larger particle sizes equivalent to the
carbon content of 106 bacterial cells, the production of free-living bac-
teria (BF) from hydrolyzed particles and the value of λ become signifi-
cantly larger (in Eqs. (3) and (4)). Under such scenario, numerical
computation of the frequency distribution of particles (especially for P0
in Eq. (A4)) requires truncating the infinite series at a specific upper
limit (here set as 2λ). However, even with this truncation, computational
time increases significantly with larger λ values. To address this chal-
lenge, we implemented an ‘offline’ approach (Walters, 1997) by pre-
computing the relationship between λ and Pn, before conducting the
simulation of the system’s time evolution, which is governed by differ-
ential equations that include the λ-dependent Pn function. Despite the
necessity for approximating Pn as a normal distribution in this approach
(Fig. S3), it significantly improves computational efficiency and
streamlines the simulation process.

We fitted both the exponential model (i.e., Y(z) ~ Y(z0) * exp[b*(z-
z0)]) and the power-law model (i.e., Y(z) ~ Y(z0) * (z/z0)b) to the

equilibrium vertical distributions, in order to describe the pattern of
decay in bacterial abundance and POC flux. Here, z0 is the starting
depth, defined as the depth where maximum bacterial abundance
occurred in depths equal to or greater than 100 m. The coefficient b
represented the exponential decay or power-law decay exponent. R2 was
calculated for both models. Although our model includes two depth-
dependent parameters: S0(z) and D(z), these are depth-independent in
the aphotic zone (z > 100 m). Therefore, we aimed to reproduce the
power-law distribution pattern without depth-dependent parameters.

Second, we examined the local sensitivity of the power-law decay
exponent to various parameters (e.g., hydrolysis rate, bacteria growth
efficiency, and sinking rate) in the spatial population model (see Ap-
pendix C. Sensitivity analysis). We also investigated how the power-law
distribution changed with different model assumptions (i.e., variable
sinking rate of particles and density-dependent bacterial mortality).

2.3. Statistical analysis of empirical data

To investigate empirical patterns, we obtained data on the vertical
distribution of bacteria and environmental variables from the Full depth
distribution of Microbial Abundance and Production (FddMAP) website
(http://cesdweb.aori.u-tokyo.ac.jp/database/sites/FddMAP/FddMA
P_EN.html) (Yang et al., 2010; Yokokawa et al., 2013). The number of
data points at each station ranged from 23 and 37, we used the bacterial
abundance at the depth ≥90 m and the maximum depth ranged from
1775 m to 5865 m. The stations ranged geographically from 67.5o S to
53.6o N. As with the spatial population model, we fitted both the
exponential model and power-law model for each station to describe the
decay in bacterial abundance (Y(z)) with increasing depth (z). Akaike
information criterion (AIC) and R2 were calculated for both the expo-
nential and power-law models. Of note, the power-law model was better
supported (i.e., lower AIC value and higher R2 value) at all stations. For
the environmental variables, we used the average value of either the
whole water column or just the epipelagic zone (i.e., top 200 m). We
used linear regression to elucidate the relationship between the fitted
parameters (i.e., exponent b for the power-law model) and environ-
mental variables.

2.4. Programming and analytical tools

We implemented the C programming language to numerically solve
the spatial population model, which is a discretized reaction–diffusion-
advection model, utilizing the 4th-order Runge-Kutta method with a
fixed time interval. For statistical analysis and data visualization, we
utilized R 4.2.1 (R core Team 2023). In addition, we used Rmpfr package
(Maechler, 2023) to obtain high-precision numerical relationships be-
tween λ and Pn, as detailed in Appendix B.

3. Results

3.1. Modeled power law distribution of bacteria and POC flux

When density dependence in microscale particle-bacteria in-
teractions was not considered (a1 = d1 = 0), total bacterial abundance
decayed exponentially and went extinct at 1280 m (<1.0e-7 cells m− 3)
(Fig. 2b). The corresponding POC flux only followed power-law until
300 m depth (black line in Fig. 2a). In addition, we analytically showed
that density independent particle-bacteria interactions led to a tradi-
tional Michaelis-Menten equation for the particle hydrolysis rate (Eq.
(A20) in Appendix A). On the other hand, with the exponential density
dependence of microscale interactions (Eq. (3), both total bacterial
abundance and POC flux followed power-law decay with depth until the
modeled bottom layer (3000 m) (blue line in Fig. 2). Although there
were slight differences in the exponent, the power-law relationship was
maintained when linear density-dependent formulation (Eq.2) was used
(Fig. S2) and when the density-dependent sinking rate and density-
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dependent bacterial mortality were considered along with the expo-
nential density-dependent attachment/detachment (Table S1). By
incorporating more realistic parameter values and employing a normal
distribution approximation (Fig. S3), we achieved significantly more
numerically-accurate slopes for the total bacterial abundance (− 1.673
and − 1.818 for the linear and exponential density dependence models,
respectively, as shown in Fig. S4). However, in order to emphasize
theoretical aspects over specific numerical values, the subsequent results
from our model are presented based on the exponential density-
dependent formulation without the normal distribution approximation
(Eq. (4)) and using the default parameter set (Table S4).

3.2. Empirical patterns from the central Pacific and Southern Ocean

The maximum bacterial abundance (≥90 m depth) ranged from

1.359 to 8.399 [105 cells mL− 1], while at the bottom it ranged from
0.083 to 0.418 [105 cells mL− 1]. The empirical distribution of total
bacterial abundance also showed power-law decay. The power-law
exponent showed regional variations from 67.5o S to 53.6o N, with
values ranging from − 1.2674 (steepest) to − 0.4751 (shallowest)
(Fig. 3). By fitting linear models between the power-law exponent and
the environmental variables, we showed that the exponent was nega-
tively correlated with temperature (Fig. 3, Fig. 4a). Moreover, the decay
in bacterial abundance was faster (more negative exponent) when
salinity was higher (Fig. 4b). However, it was slower (less negative
exponent) with other parameters, including a higher potential density of
seawater (Fig. 4c), more dissolved oxygen (DO; Fig. 4d), higher nutrient
levels (NO3

–, Si, and PO4
3-: Fig. 4f, h, i), and higher Chlorophyl-a (chl.a;

Fig. 4j), when the whole water column averaged environmental values
were used (Fig. 4 and Table S2; also see Fig. S5 for the epipelagic zone [i.
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e., top 200 m] averages). There was no significant relationship between
the exponent and apparent oxygen utilization (AOU), bacterial pro-
duction, and viral abundance (Fig. 4e, k, l). The slope coefficients from
the standardized linear regression represent empirical environmental
sensitivity (i.e., the degree of the dependence of the power-law exponent
on environmental variables) and are summarized in Fig. 5a.

3.3. Model sensitivity and comparison to empirical patterns

To compare empirical environmental sensitivity (Fig. 5a) and model
behavior, we evaluated the sensitivity of the model parameters (Fig. 5b).
We found that the exponent of bacterial abundance was more sensitive
than that of POC for the four major parameters (d1, a1, h1, and s)
(Appendix C, Table S3). Focusing on the model parameter sensitivity for
the exponent of bacterial abundance, we found that greater density-
dependent detachment rate (d1), greater sinking rate (s), smaller
density-dependent attachment rate (a1), smaller hydrolysis rate (h1),
and smaller bacterial growth efficiency (BGE) produced less negative
exponent (slower decay). In comparison, all other parameters (a0, d0, S0,
and mB) had only minor effects (Fig. 5b).

4. Discussion

The current study demonstrated that density-dependent microscale
interactions between bacteria and sinking particles (Hmelo et al., 2011;

Urvoy et al., 2022) potentially represent a new mechanism by which the
macroscale vertical distribution of bacteria emerges in the ocean. In
particular, density-dependent attachment to and detachment from
sinking particles can be key processes for qualitatively reproducing the
empirical power-law decay patterns of bacteria abundance. In compar-
ison, density-independent processes resulted in unrealistic exponential
decay of bacterial abundance, if depth-dependency of environmental
parameters and degradation rate were not considered as other models
(Mislan et al., 2014; Nguyen et al., 2022; Omand et al., 2020). Further
numerical calculations indicated that the power-law exponent was
highly sensitive to density-dependent attachment and detachment pro-
cesses. In addition, the presence of power-law decay was robust, even
when relaxing part of the model assumptions (i.e., the constant sinking
rate of particles and density-independent mortality of bacteria)
(Table S1). For example, when negative density-dependent sinking rate
was considered (β = − 0.01, Table S1), we obtained the biologically
reasonable response that POC flux and bacterial abundance decays with
steeper slopes, as the consequence of slower sinking rate than the default
setting.

Empirical patterns showed that power-law decay was ubiquitously
present from 67.5◦ S to 53.6◦ N of the central Pacific Ocean and
Southern Ocean, and that the decay exponents varied with environ-
mental factors. Greater temperature generated steeper, more negative
exponents, which corresponded to the modeled effect of the greater
decomposition rate of particles (i.e., greater hydrolysis rate h1). Simi-
larly, greater silicate, Chlorophyll-a (proxy of primary production), and
nutrient status generated less negative exponents, which could be
explained by a higher sinking rate of particles in the model. Former
environmental conditions might have favored the dominance of large-
celled species in the phytoplankton community (Dunne et al., 2005),
resulting in higher average sinking rates of organic matter produced by
phytoplankton communities.

We applied a powerful theoretical technique from population
biology (namely, time scale separation;Auger et al., 2008; Cordoleani
et al., 2013; Cosner et al., 1999) to microbial oceanography, advancing
our current understanding of the macroscopic spatial patterns of bac-
terial assemblages. To avoid computation-intensive agent-based simu-
lation models, we assumed that attachment and detachment processes
occurred much faster than demographic processes. This assumption is
ecologically reasonable, because the attachment and detachment of
bacteria occur at scales of minutes to hours (i.e., ‘fast distribution’)
(Kiørboe et al., 2002). In comparison, replication and mortality occur at
a scale of days (i.e., ‘slow growth’, but see Kiørboe et al. 2003; Enke et al.
2019). Our model described the dynamics of macroscopic variables (i.e.,
abundance of particles and bacteria) without needing to simulate
detailed individual-level dynamics. This type of simple differential
equation framework is necessary when incorporating the detailed
ecology of microbes into the already-complicated ocean circulation
models (Hasumi and Nagata, 2014).

Furthermore, we showed that the density-dependent attachment and
detachment of bacteria predicts a weighted Poisson distribution (WPD,
Eq. (4), which is under-dispersed relative to the Poisson distribution;
Fig. S1). To represent over- and under-dispersion, various WPD have
been proposed, such as two-parameter exponentially-weighted Poisson
(EWP) (Sellers et al., 2012). Here, we derived another EWP with the
novel weight function exp(− αn2) (Yoneya et al., 2021). Deviation from
Poisson could be evaluated with a Chi-squared test. Also, the goodness of
fit for the new EWP (two parameters, λ, and α) could be compared
against that of the Poisson distribution. Testing whether the empirical
distribution of bacteria is under-dispersed provides information on the
microscale non-random interactions between sinking particles and
bacteria. Also, these tests could be naturally extended to detect non-
random interactions between bacteria and their predators in microbial
food chains developed on sinking particles (Seymour et al., 2009;
Tanaka, 2009).

There are still inconsistent results regarding the existence of density-
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dependency in attachment and detachment processes. Recent studies
showed that models with density-independent attachment can well
explain the hydrolysis rate of particles (Enke et al., 2018), and early
colonization patterns of various taxa also imply the passive attachment
of bacterial cells (Datta et al., 2016). At the same time, other studies
demonstrated the effect of early colonizers on the attachment and
growth of subsequent colonizers (Grossart et al., 2003), or suggested
chemotactic behavior of some colonizers (Datta et al., 2016; Stocker
et al., 2008). The common limitation in these empirical approaches is
that it is difficult to clearly distinguish the effect of attachment, local
population growth, and detachment from each other by using the time
series of total abundance or community composition of attached bac-
teria (Kiørboe et al., 2002). However, as one of the advantages, our
model derivation suggests that independent parameter values regarding
attachment and detachment are not necessary for reproducing the
qualitative pattern. Instead, we only need the ratio of density-
independent attachment and detachment rate (a0/d0) and the net ef-
fect of density-dependence (a1-d1) for the exponential density-
dependent formulations (Eq. (4)).

Our model qualitatively reproduced the power-law decay of POC flux
but with a novel mechanism different from other models (Cael and
Bisson, 2018; Mislan et al., 2014; Nguyen et al., 2022; Omand et al.,
2020). In past theoretical attempts, the mechanism underlying the
power-law decay in POC flux include depth-dependent sinking rate,
detailed dynamics of exoenzymes (Mislan et al., 2014; Nguyen et al.,
2022), density-dependent bacterial growth (Nguyen et al., 2022), depth-
dependent particle degradation rate, and size spectrum of particles
(Omand et al., 2020) or mixture of particles with different degradation
rates (Cael and Bisson, 2018). Our model used a depth-independent
sinking rate and a single and constant particle size with much simpler
formulations for hydrolysis and physical environments than the models
above (Mislan et al., 2014; Nguyen et al., 2022). Even with such simple
settings, the non-Poisson distribution of attached bacterial cells at
microscale, which has never been considered in other models, generates
a depth-dependency of particle degradation rate and result in the power-
law decay patterns of POC flux and bacteria abundance. Our model
therefore provides an alternative mechanism for the power-law patterns
but this mechanism and the existing mechanisms above are not mutually
exclusive.

Focusing on the vertical distribution of total bacterial abundance, we
overlooked any interspecific variation in the ecological parameters
within a highly diverse bacterial community and regarded it as a ho-
mogeneous population. However, other studies, including our previous
model, examined biodiversity (Boeuf et al., 2019; Mestre et al., 2018;
Miki et al., 2008; Tréguer et al., 2018) and environmental gene networks
(Guidi et al., 2016) as the determinants of microbe-mediated sinking
flux of carbon. We note that the proposed microscale density-dependent
interactions are not mutually exclusive to these recently emerging hy-
potheses. The effects of biodiversity and gene network might additively
act on the flux of sinking particles, or these effects could be indirect,
through influences on non-random interactions between bacterial in-
dividuals (Cordero and Datta, 2016).

Our model has shown promising results in predicting power-law
exponents that align quantitatively with empirical observations. The
power-law exponent for POC flux from the model (ranging from − 1.5 ~
− 0.8, Fig. 2 and Fig. S2) closely corresponds to well-established
empirical ranges (− 1.3 ~ − 0.6, Berelson 2012). However, a discrep-
ancy arises when examining the predicted exponent for bacterial
abundance under default parameter values (− 2.7 ~ − 2.0, Fig. 2 and
Fig. S2), which is considerably steeper than empirical values (− 1.3 ~
− 0.55, Sohrin et al., 2010; Tanaka, 2009). This gap has been effectively
addressed by incorporating more realistic particle sizes and adopting an
offline approach to handle a large number of attached bacteria per
particle (in the order of 103, see [2.6] of depth_model_fit.nb.html). This
setting realized a considerably shallower slope (− 1.8 ~ − 1.7, Fig. S4),
aligning more closely with the empirical values. Importantly, this

suggests that the existing quantitative gap can be significantly reduced
through improved parameter choices. Nevertheless, it is critical to
acknowledge two overlooked features in our model. Firstly, we assumed
that newly-produced bacterial cells on particles are immediately
released into the surrounding water along with hydrolysis loss of par-
ticles, overlooking the actual scenario where bacterial cells replicate and
persist on the particle. Incorporating this consideration could result in a
more accurate representation of attached bacterial abundance, on the
order of 105–106 (Kiørboe et al., 2003; 2002), and significantly
contribute to density-dependent population growth (Datta et al., 2016).
Secondly, the exclusion of factors such as bacterial growth with non-
sinking particles, dissolved organic carbon (DOC), and autotrophy
(Herndl and Reinthaler, 2014; Miki et al., 2008; Miki and Yamamura,
2005) would underestimate bacterial growth rate. Including these fac-
tors is likely to lead to a shallower exponent of bacterial decay, making
the prediction closer to the empirical values. To address these issues in
an analytically-tractable modeling framework, future studies need to use
different mathematical approaches (e.g., integral projection models,
Rees et al., 2014).

Our framework, which links microscale interactions to macroscale
patterns, represents a promising and evolving approach to modeling
aquatic ecosystems (Wickman et al., 2024). Specifically, a microscopic
perspective highlights that the interactions between resources and mi-
crobes are patchily distributed (Azam and Malfatti, 2007) despite being
diluted under bulk concentration, therefore being mischaracterized by
spatially homogeneous models. One possible model extension would be
the explicit consideration of bacterial mortality agents (e.g., protozoa
and their non-random behavior, Seymour et al., 2008). Another direc-
tion would be the inclusion of non-random variation of bacterial di-
versity on particles, depending on particle size (Mestre et al., 2017a,b).
These extensions could help advance our understanding on how
microscale interactions influence the spatial distribution of bacterial
communities at the macroscale, and thus carbon remineralization pro-
cesses in the deep oceans.
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