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INTRODUCTION

An interaction network critically determines the dy-
namics and stability of dynamical systems (Albert et al., 
2000; Strogatz, 2001). Therefore, statistical tools for an-
alysing network properties have been well-developed 
(Barrat et al., 2004). However, quantitative recovery 
of interaction networks from natural systems remains 

challenging, in particular, to identify and quantify net-
work edges (i.e., interactions between network nodes). 
For instance, identifying trophic interactions in food 
webs relies on direct observations, for example, gut con-
tent analysis (Morinière et al., 2003) or indirect molecu-
lar approaches, for example, stable isotope analysis (Fry, 
2006). These approaches are labour-intensive and have 
limited resolution to identify and quantify interactions 
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Abstract

Reconstructing interactions from observational data is a critical need for inves-

tigating natural biological networks, wherein network dimensionality is usually 

high. However, these pose a challenge to existing methods that can quantify only 

small interaction networks. Here, we proposed a novel approach to reconstruct 

high-dimensional interaction Jacobian networks using empirical time series with-

out specific model assumptions. This method, named “multiview distance regu-

larised S-map,” generalised the state space reconstruction to accommodate high 

dimensionality and overcome difficulties in quantifying massive interactions 

with limited data. When evaluating this method using time series generated from 

theoretical models involving hundreds of interacting species, estimated strengths 

of interaction Jacobians were in good agreement with theoretical expectations. 

Applying this method to a natural bacterial community helped identify important 

species from the interaction network and revealed mechanisms governing the dy-

namical stability of a bacterial community. The proposed method overcame the 

challenge of high dimensionality in large natural dynamical systems.
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in large networks. Other types of interactions, such as 
competition and facilitation, are difficult to quantify in 
real-world systems and can only be investigated within a 
small number of interacting species (Griffin et al., 2004). 
Consequently, it becomes extremely difficult to recon-
struct high-dimensional interaction networks consisting 
of enormous numbers of nodes (e.g., microbes living in 
natural ecosystems and proteins in cells) and edges (e.g., 
competition/facilitation between microbial species and 
activation/inactivation of proteins).

More recently, empirical dynamic modelling (EDM) 
based on state space reconstruction (SSR) of dynam-
ical attractor was proposed to quantify interactions in 
nonlinear dynamical systems. EDM, such as multivari-
ate S-map; (Deyle et al., 2016), have been developed to 
quantify time-varying interaction Jacobians requiring 
no model assumptions. However, S-map allows only a 
limited number of variables (or network nodes) being 
embedded into the model (Deyle et al., 2016; Ushio 
et al., 2018). Consequently, S-map can only reveal inter-
actions among a small number of species that is often 
much less than the network dimensionality (i.e., the 
number of interacting nodes, denoted as m hereafter). 
This restriction arises due to the “curse of dimension-
ality” (Bellman, 1957). Specifically, the data required to 
reconstruct tangent space of SSR grows exponentially 

with system dimensionality, and thus makes data too 
sparse to correctly depict neighbouring relationships 
among data points (Hastie et al., 2009), whereas a cor-
rect neighbourhood relationship is essential for applying 
SSR-based methods (Ye & Sugihara, 2016). A modified 
S-map approach (Cenci et al., 2019) incorporating reg-
ularisation, while addressing the issue of process noise 
and potentially useful in estimating high-dimensional 
parameters (Hastie et al., 2009), is nevertheless still 
subject to the curse of dimensionality (Yu et al., 2020). 
Although several other methods were proposed to infer 
high-dimensional microbial networks (Bucci et al., 2016; 
Fisher & Mehta, 2014; Stein et al., 2013), these methods 
require assumptions on model structure (e.g., generalised 
Lotka-Volterra model), which is difficult to be verified 
for natural systems. Consequently, a nonparametric (or 
equation-free) method to reconstruct high-dimensional 
interaction networks for natural systems is still lacking.

Here, we propose a novel equation-free approach to 
reconstruct high-dimensional, time-varying interaction 
networks in large, nonlinear dynamical systems (e.g., 
ecological communities). The advantage of our approach 
is developing a novel distance measure (Figure 1) that 
quantifies the neighbouring relationships among high-
dimensional data points in SSR. We refer to this mea-
sure as “multiview distance” because it is determined 

F I G U R E  1   Schematic illustration for MDR S-map analysis procedure. The MDR S-map consists of two steps. The aim of the first step 
is to obtain the multiview distance that operates at the optimal embedding dimension (E) that is much smaller than the dimensionality of 
large interaction networks (m = number of nodes). Under the curse of dimensionality, neighbourhood relationships among data points cannot 
be precisely inferred from the distance, dM (.) among high-dimensional data points in manifold Mx that summarises the dynamics of entire 
interaction networks. Therefore, (1–1) we recovered the neighbourhood relationships among high-dimensional data points X(t) from numerous 
low-dimensional state space reconstruction (SSR; M1, M2…, MC) (i.e., multiview SSR). Among these SSRs, (1–2) we computed distances (L2 
norm, i.e., Euclidean distance) between data points under the optimal embedding dimension E. Collecting all these distances, (1–3) we obtained 
the multiview distances (dE) and (1–4) determined the data weights (WE) for the following S-map analysis. In the second step, we estimated the 
high-dimensional interaction strength (B) by S-map, based on locally weighted least square optimisation (argminB(||. ||2)

2) with regularisation 
(λ[.]) incorporated. Specifically, (2-1) the weights, wE=exp(−θdE/mean(dE)), derived in the first step were plugged-in the S-map optimisation 
algorithm. (2–2) Under the constraint of regularisation (λ and α are the penalty factors of regularisation), (2–3) we solved the high-dimensional 
local linear coefficients to approximate interaction strengths at each time step. Detailed definitions of each variable are reported in Methods 
and SI Text, I. MDR S-map algorithm and implementation
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by ensembling numerous distances measured in various 
low-dimensional, topologically equivalent SSRs (i.e., 
multiview embeddings; [Ye & Sugihara, 2016]). Through 
multiview distance, our approach links two existing 
EDM methods, multiview embedding (Ye & Sugihara, 
2016) and regularised S-map (Cenci et al., 2019), to re-
construct large interaction networks, but avoids prob-
lems associated with high dimensionality by conducting 
SSR operations under the optimal embedding dimension 
(E) much smaller than network dimensionality m (i.e., 
E≪m). This method, named “multiview distance regula-
rised S-map” (abbreviated as MDR S-map, hereafter), is 
summarised in two steps (Figure 1): (i) measuring mul-
tiview distances among m-dimensional data from vari-
ous E-dimensional multiview SSR that embeds various 
combinations of variables (Ye & Sugihara, 2016); and (ii) 
determining m-dimensional interaction Jacobian matrix 
at each time point by plugging-in multiview distances to 
S-map algorithm with regularisation constraints (Cenci 
et al., 2019) (Methods and SI Text, I. MDR S-map al-
gorithm and implementation). More detailed statistical 
properties of MDR S-map are in SI Text, II. Statistical 
properties of MDR S-map. Through the two-step pro-
cedure of MDR S-map, we aim to reconstruct high-
dimensional interaction networks for large dynamical 
systems using time series data.

It is noteworthy that the interaction strength quanti-
fied by MDR S-map as well as other EDM approaches is 
the interaction Jacobian (Berlow et al., 2004), not the in-
teraction coefficient. Interaction coefficient is the pa-
rameter describing per capita effect of one species j to 
the other species i (e.g., the parameter �ij = � (

1

x(i)
dx(i)

dt
)∕�x(j) 

in generalised Lotka-Volterra model, where x(i) is the abun-
dance of species i and t is time) and is more often used in 
previous network studies than interaction Jacobian, es-
pecially in theoretical analysis (Allesina & Levine, 2011; 
Dunne et al., 2002). However, interaction Jacobian (e.g., 
Jij =

�x(i)(t+1)

�x(j)(t)
 in discrete-time systems) recovered by our 

algorithm quantifies the net effects of abundance 
changes in nodes j (between two consecutive observa-
tions) on the abundance of species i, which is more con-
sistent with the findings of empirical addition/removal 
experiments (Carpenter & Kitchell, 1988; Skelly, 2002). 
The interaction Jacobian is time-varying as it integrates 
two sources of temporal variability: (i) species abun-
dance changed with time; and (ii) the interaction coeffi-
cient is time-varying (i.e., αij  =  αij(t); e.g., McCoy and 
Pfister [2014]). Nevertheless, reconstructing interaction 
Jacobians remains meaningful in determining the dy-
namic behaviour of the system (Cenci & Saavedra, 2019; 
Ushio et al., 2018) and provides a powerful tool to empir-
ically track temporal variations in interaction (Deyle 
et al., 2016), which might be critical to the urgent issue 
concerning how ecological networks would respond to 
environmental changes (Hoegh-Guldberg & Bruno, 
2010).

We tested the MDR S-map method using simulated 
time-series data mainly from a stochastic population 
dynamic model (i.e., multi-species Ricker model in 
Methods and SI Text, III. Parameterisation of multi-
species Ricker model with random noises), where interac-
tion strengths and network properties are exactly known. 
Then, we employed this method to analyse empirical 
bacterial community data (dominant OTUs [operational 
taxonomic units]) collected from a natural coastal envi-
ronment (Martin-Platero et al., 2018). In both simulated 
and empirical datasets, numbers of selected species (i.e., 
m  =  117 and 136 for synthetic data from multi-species 
Ricker model and empirical bacterial community data, 
respectively) were more than the length of time series 
data (N = 100 and 90 for synthetic and empirical data, 
respectively), a situation that very likely occurs in real-
world datasets concerning large interaction networks. 
Based on analysis of a bacterial community, we demon-
strated a real-world application of MDR S-map for re-
constructing large, time-varying interaction networks 
and unveiling the interplay among network properties, 
dynamics, and stability.

M ATERI A LS A N D M ETHODS

MDR S-map

Our method of reconstructing large interaction net-
works using time series data was based on EDM, an ap-
proach rooted in attractor reconstruction (Chang et al., 
2017). Regarding the latter, a critical parameter is the 
optimal embedding dimension, E, that determines how 
many time-lags or variables were incorporated in SSR-
based methods (Deyle et al., 2016; Hsieh et al., 2005; 
Kennel et al., 1992; Shalizi, 2006; Ye & Sugihara, 2016). 
In large systems, classical methods encounter an issue: 
the number of network nodes is much greater than what 
EDM models can accommodate [E usually <20 (Hsieh 
et al., 2005)]. To overcome this difficulty, we proposed 
a method, MDR S-map, that allows estimating interac-
tion strengths of high-dimensional systems while main-
taining the SSR operation at the low-dimensional, E. 
Figure 1 summarised the two-step analytical procedure 
based on state space reconstruction and more detailed 
algorithms, implementation, and statistical properties 
of MDR S-map were provided in SI Text, I. MDR S-
map algorithm and implementation and II. Statistical 
properties of MDR S-map. In addition to inferring in-
teraction Jacobians, the proposed new method, similar 
with other EDM methods (Cenci et al., 2019; Deyle et al., 
2013; Sugihara et al., 1990; Sugihara & May, 1990), ena-
bles to forecast the future states of model variables in 
chaotic systems. Therefore, we also compared MDR S-
map with existing EDM methods regarding their fore-
cast ability.
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Assessing MDR S-map based on a theoretical 
network model

We validated our MDR S-map approach mainly by 
analysing time series data generated from a theoretical 
network model, multi-species Ricker model, where the 
interaction strengths and network quantitative features 
are known a priori. This network model initially consists 
of 1000 interacting species. Let Ni(k) denote the popu-
lation size of species i (i = 1, 2, …, 1000) at time step t 
(t = 0, 1, 2, …, n), and N(t) = (N1(t), N2(t), …, N1000(t))T. 
Population dynamics of species i followed the discrete-
time equation,

where r0i is the intrinsic growth rate of species i, ei is a vec-
tor taking zero values for all except for the ith entity, M 
represents time-independent interaction matrix with the 
size 1000 × 1000 (with elements mij representing the effect 
of species j on species i). The detail parameterisation of the 
multi-species Ricker model was offered in SI Text, III.

Parameterisation of multi-species Ricker model 
with random noises

For model time series, we only used the last 100 time 
steps of the 1000 simulated steps for further analyses. 
Because only some of the model populations in this 
chaotic system could sustain their dynamics until the 
end of model computations, we only selected dominant 
species with mean relative abundance >0.1% (calculated 
over the last 100 steps) for further analyses. These dom-
inant species had obvious temporal fluctuations, which 
is necessary for applying EDM. Then, we applied the 
MDR S-map to reconstruct the interaction networks 
from the simulated time series and compared the recon-
structed networks to theoretical networks derived from 
the Jacobian matrix of the difference equation model. 
To make reasonable comparisons, we multiplied the 
theoretical expectation of Jacobian 

(

�Xt+1

�Yt

)

 by the ratio 

of standard deviations, �Y

�X

, because time series data 

were normalised with respect to the temporal standard 
deviations prior to performing MDR S-map. Finally, 
we examined whether the estimated interaction 
Jacobians were consistent with the scaled theoretical 
Jacobians.

Based on the reconstructed interaction networks, 
we verified whether interaction strengths (interaction 
Jacobians) can be successfully recovered at each time 
point. Specifically, we computed inference skill that was 
defined as the Pearson correlation between all theoreti-
cal and estimated interaction strengths. We determined 
the inference skill at each time point and investi-
gated how inference skill varied among time-varying 

interaction Jacobian matrices. In addition, we calcu-
lated node inference skills defined as the averaged in-
ference skill on evaluating the interactions associated 
with each single species, including the interactions that 
a species imposes on others (outward) or be affected by 
others (inward).

In addition, we examined the quantitative features of 
interaction Jacobian networks reconstructed from data 
generated by the multi-species Ricker model. To verify 
the quantitative features of entire interaction networks, 
we calculated mean and standard deviation of interac-
tion strength. We also evaluated key measures derived 
from interaction Jacobian matrices, including its trace 
and dominant eigenvalue, which characterises dynami-
cal behaviour of dynamical systems (Cenci & Saavedra, 
2019; Ushio et al., 2018). In summary, we derived quan-
titative measures describing interaction networks from 
various aspects to test whether topological properties in 
theoretical networks were quantitatively preserved in the 
reconstructed networks.

Sensitivity tests of MDR S-map on more 
complicated data structure and alternative 
network models

We tested the robustness of MDR S-map on random 
noises and data issues that are common in real world 
applications: (1) only percentage data are available; 
(2) impacts of data noise (including process and ob-
servation noise and stochastic environmental forc-
ing); and (3) not all data from every network node 
are available (incomplete network nodes). These were 
incorporated in the synthetic data generated by the 
multi-species Ricker model. Then, we examined the 
inf luences of these complexities on inferring interac-
tion Jacobians.

In addition, to test whether MDR S-map can re-
construct interaction networks without specific model 
assumption (i.e., nonparametric), we examined the in-
ference skills of MDR S-map on reconstructing inter-
action Jacobians of more complicated network models. 
In addition to the (i) multi-species Ricker model, we 
also tested MDR S-map on (ii) discrete Lotka-Volterra 
competition model, (iii) Ricker-Beverton-Holt model, 
and (iv) host-parasitoid Nicholson-Bailey model. 
Moreover, we additionally incorporated time-varying 
interaction coefficients with seasonal variations into 
all these models. In total, we examined the inference 
skills on inferring interaction Jacobians in eight net-
work models (i.e., four model types (i–iv) with either 
fixed or time-varying interaction coefficients). Time se-
ries datasets produced from these models were based on 
the same procedure as that for the multi-species Ricker 
model. The details of these models were presented in 
SI Text, IV. Testing MDR S-map on more complicated 
network models.

(1)Ni(t + 1) = Ni(t)exp
[

r0i
(

1 + eiMN(t)
)]

.
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Analysis of empirical bacterial time series data

We applied MDR S-map on an empirical time series 
dataset of natural bacterial communities in Canoe 
Beach, Boston, MA, USA (Martin-Platero et al., 2018). 
This dataset was derived from 16S rRNA gene amplicon-
sequencing data sampled daily from July 23, 2010 to 
October 23, 2010. In total, there were 90 valid time 
points, apart from three interrupted missing data. In this 
dataset, only relative abundances were available for bac-
teria OTUs. To be consistent with analysis of model time 
series, we selected the dominant species (mean relative 
abundance  >  0.1%). In total, 136 OTUs were selected. 
Due to data limitations, we reconstructed bacterial in-
teraction networks using relative abundance data; never-
theless, based on our analysis using the model example, 
the network reconstruction using percentage data was 
still reliable to a large extent (See our discussion in SI 
Text, II-2. Statistical properties of MDR S-map based on 
percentage data).

The reconstructed interaction networks enabled 
us to explore how and why the bacterial interaction 
network changed over time. Here, we investigated 
causal mechanisms underlying dynamical stability 
of the bacterial community. Specifically, we exam-
ined causal relationships between the trace of recon-
structed Jacobian matrices that was referred as an 
practical index indicating structural instability (Cenci 
& Saavedra, 2019) versus summary network statistics 
(e.g., mean interaction strength), ecological properties 
characterising bacterial diversity (e.g., Shannon diver-
sity) and physicochemical environments (e.g., nutri-
ents and salinity). To examine their relationships, we 
applied linear analysis (temporal correlation) to deter-
mine the statistical association and nonlinear analy-
sis (CCM) to identify causality. For linear correlation 
analysis, we calculated the Pearson correlation co-
efficient between pairs of time series and tested the 
significance using a stationary bootstrap that accom-
modates autocorrelations in time series. For nonlin-
ear causality test, we performed CCM analysis (Chang 
et al., 2017) (See the section Identifying causal variables 
by CCM in SI Text, I-1.).

Computation

All analyses were done with R (ver. 3.1.2). Simplex pro-
jection and CCM analyses were implemented using the 
rEDM (Version 1.2.3) package (Ye et al., 2013). The 
elastic-net regularisation used in MDR S-map is solved 
by glmnet package (version 3.0). Network topological 
properties were computed using the igraph package 
(Csardi & Nepusz, 2006). The computation codes of 
MDR S-map, as well as other analytical procedures, 
are deposited in the Figshare Repository (https://doi.
org/10.6084/m9.figsh​are.16573​037.v1; [Chang et al., 2021]).

RESU LTS A N D DISCUSSION

One-step forward predictability of network 
nodes and optimal regularisation algorithms

Prior to analysing the reconstructed networks, we evalu-
ated the forecasting ability of MDR S-map for the dy-
namics of network nodes (e.g., one-step forward forecast 
of future node states), as forecasting skills represent 
a proxy of reliability for reconstructed dynamical sys-
tems (Ye & Sugihara, 2016) and are highly associated 
with inference skills on inferring interactions (Figure 
S1). Compared to other EDM methods, MDR S-map 
had greater forecasting skills than other EDM methods 
(Table 1). In addition, for model time series generated 
by the multi-species Ricker model, the MDR S-map out-
performed all other EDM methods (Table 1), irrespec-
tive of regularisation algorithms (i.e., classical [Hastie 
et al., 2009] and adaptive [Zou & Zhang, 2009] elastic-
net regularisation). Similarly, the MDR S-map outper-
formed other EDM methods in empirical bacteria time 
series (Table 1). Specifically, the MDR S-map results, 
based on classical elastic-net regularisation, had the 
best performance in both in-sample and out-of-sample 
forecasts. The MDR S-map results, based on adaptive 
elastic-net regularisation, also outperformed all existing 
EDM methods for out-of-sample forecasts, but had simi-
lar performance as the regularised S-map for in-sample 
forecasts (Table 1). It is noteworthy that existing EDM 
methods (e.g., multivariate and regularised S-map) per-
formed reasonably well and have been demonstrated to 
outperform other linear time series analyses on fore-
casting nonlinear dynamical systems (Deyle et al., 2013; 
Sugihara et al., 1990). Nevertheless, our proposed MDR 
S-map further improved forecast skills, as full informa-
tion of entire networks was incorporated, whereas only 
partial information of sub-networks can be incorporated 
by other EDM approaches. Although this improvement 
was not tremendous, the novel findings based on incor-
porating complete networks likely open a new research 
direction for future development of nonlinear time series 
analysis. Nevertheless, forecast skills of MDR S-map de-
creased with spanning forecast horizon (at the most 20 
steps forward presented in Figure S2) because forecast 
errors would be accumulated and amplified, especially 
in chaotic systems as revealed in other EDM methods 
(Sugihara et al., 1990).

Although MDR S-map can effectively forecast dy-
namics of network nodes, irrespective of regularisation 
algorithms, adaptive elastic-net regularisation obtained 
less false-positive findings in estimating interaction 
strengths for simulated data and thus was applied to 
reconstruct interaction networks throughout our analy-
ses in this study. Compared to the MDR S-map analy-
sis based on adaptive elastic-net, the analysis based on 
classical elastic-net had slightly better forecast skills, 
but less accuracy and more false-positive findings in its 

https://doi.org/10.6084/m9.figshare.16573037.v1
https://doi.org/10.6084/m9.figshare.16573037.v1
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interaction strength estimations (accuracy  =  0.671 and 
0.863 and false positive rate = 0.308 and 0.029, based on 
classical and adaptive elastic-net regularisations, respec-
tively; Table S1). The adaptive elastic-net includes an ad-
ditional penalty to eliminate small non-zero estimates 
that are potentially false positive (Zou & Zhang, 2009), 
whereas classical elastic-net does not eliminate nodes 
that have no direct interaction with the target node, but 
are still informative to forecast its future state (possibly 
through indirect interactions) (Ye et al., 2015). Based on 
this result, the best regularisation algorithm optimising 
one-step forecast was slightly different from that opti-
mising network reconstructions. As our objective was to 
estimate interaction strengths, we only present results 
of network reconstruction based on adaptive elastic-net 
regularisation in the rest of this work.

Evaluating the quality of reconstructed 
interaction network using simulated datasets

MDR S-map correctly quantified the strengths of time-
varying interactions (i.e., Jacobians Jij(t) quantifying the 
net influence of node j on i at time t) in high-dimensional 
(m  =  117) interaction networks embedded in the multi-
species Ricker model. The estimated interaction strengths 
were highly consistent with theoretical expectations de-
rived from the model (Figure 2). Such strong consistency 
held in most analysed time points (Figure 2b,c) and in most 
network nodes (Figure 2d), as well as for out-of-sample 
data (Figure S3) and for the long-term median (Pearson 
r  =  0.930; Figure S4a) obtained from temporal medians 
of all interaction strengths (i.e., long-term Jij  =  median 
(Jij(t)); t = 1, 2, …, n). In contrast, the theoretical long-term 
medians had a weak negative relationship with interac-
tion strengths inferred from the correlation coefficients 
between each pair of time series (Pearson r = −0.081 and 
p < 0.01 in Figure S4b), suggesting that correlation between 
time series provided no clear information for knowing true 
interaction strength in nonlinear systems, as reported 
(Sugihara et al., 2012). Thus, although inferring interac-
tion using correlation-based approaches remains common 
in ecology literature (Carr et al., 2019; Freilich et al., 2018), 
applying these methods requires careful check on their un-
derlying assumptions (Berry & Widder, 2014; Carr et al., 
2019). However, the strengths of weak interactions cannot 
be precisely estimated by MDR S-map, resulting in a sub-
stantial portion of false positive and false negative findings 
(Table S1) presented as the vertical and horizontal parts, 
respectively, of the crosses near the origin (Figure 2a).

Quantitative features of interaction 
Jacobian network

The reconstructed interaction networks well preserved 
the quantitative features characterising entire interaction T
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Jacobian networks embedded in the multi-species Ricker 
model. Firstly, the mean and standard deviation of inter-
action strengths, although slightly underestimated, had 
temporal dynamics highly associated with the dynam-
ics of theoretically expected values (Figure S5a,b). That 
is, quantitative features in reconstructed networks were 
relatively correct; in a practical sense, due to this high 
consistency, we inferred that our approach was capable 
of monitoring structural changes of interaction Jacobian 
networks in time. Similarly, quantitative features of in-
teraction Jacobian matrix, such as matrix trace Tr(J), 
had a strong positive linear association with the tempo-
ral dynamics of theoretical Tr(J) (Figure S5c). However, 
local Lyapunov instability (i.e., the norm of dominant 
eigenvalue; Figure S5d) only preserved a ranked but not 
a quantitative relationship, which exhibited a concord-
ance in the phases of peaks and valleys but not in quan-
titative magnitude. These results were consistent with 
the previous findings that the eigenvalue was more dif-
ficult to be recovered than the trace (Cenci & Saavedra, 
2019) and that evaluation of dynamical stability remains 

challenging (Kéfi et al., 2019) for large dynamical sys-
tems. In addition to features characterising entire net-
works, other topological properties associated with 
network nodes, for example, strength (i.e., weighted 
degree) and centrality (Figure S5e–h and Table S2; SI 
Text, V. Topological properties of interaction Jacobian net-
works) were also preserved. Although these topological 
properties were conventionally evaluated in a network 
quantified by interaction coefficients instead of interac-
tion Jacobians, deriving these measures in interaction 
Jacobian networks remains useful to identify important 
species with critical roles in interaction networks.

It is noteworthy that other EDM approaches were 
unable to recover entire networks, as these methods 
cannot accommodate a large number of interactions in 
SSR models. A recent study (Ushio, 2020) quantified 
interaction by increasing embedding dimension in reg-
ularised S-map (Cenci et al., 2019) with the number of 
causal nodes (i.e., not operating at the optimal embed-
ding dimension). This method, although quantified in-
dividual interactions with moderate accuracy, generally 

F I G U R E  2   Comparisons of interaction strengths estimated by MDR S-map, with true strengths derived from multi-species Ricker model. 
Interaction strengths (Jacobians) of time-varying interaction networks were effectively reconstructed with high inference skills (i.e., Pearson 
r examined at each time point). Panel (a) demonstrated an empirical linear relationship between the estimated and theoretical interaction 
Jacobians observed in a snapshot network at time =16, wherein the overall inference skill equals to the median value (0.836) among all inference 
skills. Here, grey line represents the 1:1 line, and black line represents the slope of simple linear regression. Applying this analysis presented 
in (a) for all time points, the distributions of inference skill (b) and regression slope (c) were determined. These distributions revealed that the 
interaction networks can be reliably reconstructed at most time points, but the interaction strengths were slightly underestimated (i.e., slope <1 
in [c]) because of the regularisation applied in MDR S-map. Based on node inference skills computed for each 117 nodes (d), the reconstructed 
interactions associated with individual nodes (a node can affect others [outward] or be affected [inward]) were mostly reliable
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cannot accurately estimate quantitative features of large 
networks (Figures S6–S8; SI Text, VI. Importance of em-
bedding dimension in the estimation of network topology).

Sensitivity tests of MDR S-map on complicated 
data structure

The inference skill of MDR S-map remained high when 
faced with complicated data structures similar to real 
world applications. First, estimations based on relative 
abundance (or percentage) data, a common format for 
biological datasets (e.g., metabarcording data (Martin-
Platero et al., 2018)), remained effective for inferring 
the interaction networks with subtle biases (Figure S9). 
Second, our estimates were also robust to random noises, 
including observation noises, process noises and stochas-
tic environmental forcing (Figures S10–S13; SI Text, III-3. 
Robustness of MDR S-map to noises). Nonetheless, among 
various noise types, observation noises had relatively 
stronger impacts than other types of noises on inference 
skills. Finally, the consistency between MDR S-map es-
timations and theoretical expectations persisted, even 
when some critical network nodes (e.g., dominant species 
ranked in top 10% of abundance) were artificially removed 
from the analysis (Figure S14). Therefore, we inferred that 
the reconstruction of network subgraphs was still reliable, 
even if some critical nodes (Figure S14) or external envi-
ronmental forcing (Figures S10–S11) were unobservable 
or excluded from analyses for practical reasons.

Tests of MDR S-map on more complicated 
network models

Apart from (i) multi-species Ricker model (Figure 2), 
MDR S-map reconstructed interaction Jacobians of more 
complicated network models, including (ii) discrete 
Lotka-Volterra competition model (Figure S15a–c), (iii) 
Ricker-Beverton-Holt model (Figure S15d–f), and (iv) 
host–parasitoid Nicholson-Bailey model (Figure S15g–i) 
with reasonable inference skills (medians of overall in-
ference =0.918, 0.470, and 0.568, for model (ii–iv), re-
spectively). In addition, the interaction Jacobians were 
also reconstructed in models incorporating time-varying 
interaction coefficients (Figure S16) with no or small re-
ductions in inference skill (medians of overall inference 
=0.667, 0.896, 0.478 and 0.587, for model (i–iv), respec-
tively). Overall, inference skills were highest for model 
(ii), which had similar complexity as the original Ricker 
model (Figure 2), but were lower for the other more com-
plicated models (iii and iv). Nevertheless, the application 
of MDR S-map in these cases remained effective under 
no specific model assumption. That is, MDR S-map was 
a useful nonparametric (equation-free) method, suitable 
for analysing empirical datasets generated by unknown 
governing equations.

Applications to a real-world example of 
bacteria community

Identifying important bacterial species from 
interaction networks

As an empirical example, we reconstructed bacterial in-
teraction networks (Movie S1) in a natural coastal envi-
ronment. On average, important OTUs exerting strong 
positive effects on others (out-strength) mainly belonged 
to order Flavobacteriales and order Rhodobacterales 
(Figure S17), many members of which are copiotrophic 
species (Fuhrman et al., 2015) that grow rapidly in suit-
able environments and respond instantaneously to en-
vironmental changes. This result confirmed previous 
findings that Flavobacteriales are capable of degrading 
various polymers into more labile forms (González et al., 
2008), which might benefit other co-existing bacterial 
species. Similarly, the results based on hub centrality 
index also revealed the importance of Flavobacteriales 
and Rhodobacterales as well as the other OTUs (e.g., 
Sphingobacteriales and Actinomycetales in Table S3) 
that occupied the central position of interaction net-
works. Although functions of these important OTUs 
have not been fully elucidated, our approach provided a 
promising way to identify the most critical players from 
a perspective of interaction network. It is noteworthy 
that the amplicon sequencing method (Martin-Platero 
et al., 2018) used to collect this bacteria dataset may have 
missed some important OTUs, due to incomplete DNA 
extraction and PCR biases. Nonetheless, the recon-
structed sub-network without including every OTU may 
be still reliable, according to our assessment on simu-
lated datasets (Figure S14).

Deciphering causal mechanisms governing 
dynamical stability of communities

Reconstruction of high-dimensional interaction net-
works revealed causal mechanisms underlying dynami-
cal stability of natural bacterial communities. Firstly, we 
computed the trace of interaction Jacobian matrices Tr(J), 
which has been considered a nonparametric index infer-
ring structural instability for empirical systems (Cenci 
& Saavedra, 2019). This index was causally affected by 
mean interaction strength (p-value of CCM defined 
in Method, pCCM = 0.027 in Figure 3a) and exhibited a 
marginally significant negative association in their tem-
poral dynamics (Pearson r = −0.250, pbootstrap = 0.098). 
Because mean interaction strengths were mostly positive, 
this negative association implied that bacterial commu-
nities became more stable if more facilitative interac-
tions occurred in communities. Moreover, facilitative 
interactions dominated the interaction networks under 
productive environments, as revealed by high concen-
trations of chlorophyll a (Figure 3b) and nutrients (e.g., 
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silicate in Figure 3c). Likely, nutrients facilitated growth 
of primary producers producing abundant organic mat-
ters, which bring common benefits for various bacteria 
involved in various stages of organic decomposition and 
enhance facilitative interactions. In addition, the bacte-
rial community was more structurally stable when the 
Shannon diversity of bacterial community was higher 
(Figure 3d), confirming previous findings of positive 
biodiversity effects on ecosystem stability (Chang et al., 
2020). Apart from biological factors, structural stability 
was weakened by physicochemical disturbances caused 
by terrestrial freshwater input (revealed by reduced sa-
linity in Figure 3e), a common local-scale disturbance in 
a coastal environment (Craft, 2007). These findings dem-
onstrated a clear example elucidating key processes in 

natural systems through uncovering network topology 
and stability measures, which could not be previously 
achieved due to lack of a method to reliably reconstruct 
large dynamical networks.

Limitations in MDR S-map

There are several limitations in applying the MDR S-
map algorithm. Firstly, the number of interactions can-
not be exactly recovered, due to a lack of statistical power 
on inferencing very weak interactions. Specifically, the 
number of interactions (i.e., edge number) detected in our 
reconstructed network was less than that in the model 
network (e.g., median edge number = 2098 and 889 for 

F I G U R E  3   Reconstructed interaction networks from empirical daily time series revealed causal mechanisms determining structural 
stability in a coastal bacterial community. (a) There was a significant negative association between mean interaction strength and the trace 
of reconstructed interaction Jacobian matrix, Tr(J), that was used as a nonparametric measure for indicating structural instability (Cenci & 
Saavedra, 2019). In this system, there were more positive (facilitative) interactions when (b) primary production (approximated by chlorophyll a 
concentration) and (c) nutrient concentration (e.g., silicate) were high. Moreover, Tr(J) decreased with increasing Shannon diversity index (d). In 
addition, local environmental disturbances caused by terrestrial freshwater input destabilised the dynamics of marine bacterial community (e). 
Correlation analysis with stationary bootstrap (r and pbootstrap) and causality analysis with Convergent Cross Mapping (ρCCM and pCCM) were 
used to decipher mechanisms (see Methods)

0.
20

0.
30

0.
40

Julian day

Tr(J)
MIJ

M
ea

n 
in

te
ra

tio
n 

Ja
co

bi
an

 (M
IJ

)

220 240 260 280
55

60
65

70
75

Chlorophyll a concentration (μg/L) Silicate concentration (μM)
55

60
65

70
75

55
60

65
70

75

Salinity (‰)

M
ea

n 
in

te
ra

ct
io

n 
Ja

co
bi

an
 (M

IJ
)

Tr
(J

)

(a)

(b) (c)

(e)(d)

0.
4

0.
5

0.
6

0.
7

0.
8

32 33 34 35 36

4 6 8 10 12

0.
4

0.
5

0.
6

0.
7

0.
8

4 6 8 102

r = −0.279; pbootstrap = 0.008
ρCCM= 0.223; pCCM = 0.019

r = −0.250; pbootstrap = 0.098
ρCCM= 0.208; pCCM = 0.027

r = 0.553; pbootstrap < 0.001
ρCCM= 0.486; pCCM < 0.001

r = -0.359; pbootstrap = 0.006
ρCCM= 0.378; pCCM < 0.001

4.5 5.0 5.5 6.0

Shannon diversity

r = -0.217; pbootstrap = 0.069
ρCCM= 0.298; pCCM = 0.048

Tr
(J

)
U

ns
ta

bl
e

S
ta

bl
e



2772  |    
RECONSTRUCTING LARGE INTERACTION NETWORKS FROM EMPIRICAL TIME SERIES 

DATA

theoretical and reconstructed networks in multi-species 
Ricker model, respectively). Consequently, the recon-
structed network suffers from high false negative rate in 
identifying the presence of a weak interaction (Table S1). 
Nonetheless, errors for indicating wrong interaction sign 
rarely occurred. Therefore, our reconstructed network 
is unsuitable to uncover the topological properties rel-
evant to link number (i.e., unweighted network), but is 
reliable to uncover quantitative properties weighted by 
interaction strength (i.e., weighted network) (Figure S5 
and Table S2) that critically determine key properties 
of complex systems (Barbier et al., 2018; Liautaud et al., 
2019). Nonetheless, future research is required to fur-
ther improve the statistical power for correctly revealing 
weak interactions.

Although MDR S-map is an effective nonparametric 
method requiring no specific model assumption, infer-
ence skills are lower when analysing datasets generated 
by more complicated processes, for example, model in-
corporating time-varying interaction coefficients (Figure 
S16a–c), complex functional forms (e.g., Berveton-Holt 
model in Figure S15d–f), or more mechanistically for-
mulated interactions (e.g., host-parasitoid model Figure 
S15g–i) compared to simple phenomenological models, 
such as a Ricker model (Figure 2). In addition, the ap-
plication of our algorithm has been thus far limited to a 
few types of network models only, and robustness anal-
yses were mainly conducted on the multi-species Ricker 
model. Therefore, it remains an open question about how 
efficiently the proposed method can reconstruct interac-
tion networks with various complicated processes acting 
in concert (e.g., noises, complex interaction forms, types, 
or even higher order interactions [Levine et al., 2017]). 
Consequently, the proposed method, although it provides 
a novel methodological framework to address the curse 
of dimensionality, it still needs great effort to improve its 
efficiency via more detailed future investigations.

The algorithm might be less effective in reconstruct-
ing the networks with large ranges of interaction strength 
(Figure S18). This difficulty is caused by regularisation, 
which prevents large estimates in interaction strength 
due to including penalty on the magnitude of estimates. 
Thus, if some interaction strengths were too large, ap-
parent inference errors appeared (Figure S18c) and 
destroyed the overall linear relationships between esti-
mated and theoretical values. However, extremely strong 
interactions rarely exist in natural systems (McCann 
et al., 1998) and thus might not be very influential for 
empirical applications.

EDM-based methods, including MDR S-map, can so 
far be applied to investigate only interaction Jacobian 
networks. The reconstructed interaction Jacobians, al-
though importantly determine system dynamics, are dif-
ferent from conventional networks quantified by fixed 
interaction coefficients. Theoretically, the interaction 
coefficients can be extracted from Jacobians by scal-
ing abundances (with a specific assumption regarding 

the governing equation, e.g., Ricker or generalised 
Lotka-Volterra model), but we do not recommend this 
procedure, as scaling of abundance is numerically un-
stable unless abundance can be precisely determined. 
Therefore, there is an urgent need to bridge the two types 
of interaction measures in theory, for example, theoreti-
cal analysis conducted by Song and Saavedra (2021), or to 
develop novel network theory established on interaction 
Jacobian networks that are empirically more available.

Considering the limitations in applying MDR S-
map, we offer a detailed practical guide in SI Text, VII. 
Practical guide for applying MDR S-map in empirical 
analysis, that helps to improve the quality of network re-
construction in real-world systems. This practical guide 
addressed three critical issues in analysing empirical 
dataset, including (i) the selection of informative time 
series, (ii) the exclusion of rare species from MDR S-map 
analysis, and (iii) the issue of time series length.

Concluding remarks

The MDR S-map approach proposed in this study over-
came the curse of dimensionality in network reconstruc-
tion. This method needs no model assumption and can be 
used to quantify high-dimensional interaction Jacobian 
networks using time series data alone. Despite some 
limitations, the method established on Takens theorem 
(Takens, 1981) facilitates analysis of datasets exhibit-
ing complex chaotic dynamics generated by nonlinear 
dynamical systems. This analytical framework can be 
applied in natural bacteria communities (Figure 3) and 
easily extended to other real-world systems for searching 
important nodes or interactions from large networks, if 
time series of network nodes are available. Therefore, we 
appeal to collect high-quality time series data from vari-
ous systems. As such, reconstruction of diverse types of 
interaction networks is expected to improve our under-
standing regarding complex interactions and emergent 
properties of large dynamical networks involving enor-
mous numbers of interacting components.
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